Problem 272C

Consider a steady turbulent planar Poiseuille flow of an incompressible fluid of density, ρ , between two smooth flat plate distance, h, apart and driven by a pressure gradient, -dp/dx, in a direction, x, parallel with those plates. If the friction factor, f, of this duct is defined as

$$f = \frac{2h}{\rho V^2} \left(-\frac{dp}{dx} \right) \tag{1}$$

where V is the average volumetric velocity of the flow, find the relation between wall shear stress, τ_w , and ρ , f and V. If the friction velocity, u_{τ} , is defined as $\sqrt{\tau_w/\rho}$ what is the relation between u_{τ}/V and f?

If the mean fluid velocity profile, $\overline{u}(y)$, in the duct (y is the distance from the mid-line of the duct) is given by

$$\overline{u}(y) = 5.75 \log_{10} \left(\frac{y u_{\tau}}{\nu}\right) + 5.5 \tag{2}$$

what is the relation between f and the Reynolds number, $Re = hV/\nu$, of the flow (ν is the kinematic viscosity of the fluid)?