An Internet Book on Fluid Dynamics

Problem 250Z

A laminar boundary layer subjected to a favorable pressure gradient is to be approximated by a profile of the form :

$$
\begin{gathered}
\frac{u}{U}=3\left(\frac{y}{\delta}\right)-3\left(\frac{y}{\delta}\right)^{2}+\left(\frac{y}{\delta}\right)^{3} \text { for } 0<y<\delta \\
\frac{u}{U}=1 \text { for } y>\delta
\end{gathered}
$$

Use approximate boundary layer methods to develop the differential equation for $\delta(x)$ (it involves $U(x)$).
If $U(x)=C x^{\frac{1}{9}}$ the solution of this equation is of the form $\delta(x)=A x^{k}$. Find A and k, in other words the solution to the problem, in terms of C and the kinematic viscosity, ν.

Postscript: In order to save time, it is not necessary for you to numerically evaluate the profile parameters, α, β and γ, provided you give complete and precise definitions of these quantities.

