An Internet Book on Fluid Dynamics

Problem 250C

A laminar boundary layer subjected to a favorable pressure gradient is to be approximated by a profile of the form :

$$
\begin{gathered}
\frac{u}{U}=3\left(\frac{y}{\delta}\right)-3\left(\frac{y}{\delta}\right)^{2}+\left(\frac{y}{\delta}\right)^{3} \text { for } 0<y<\delta \\
\frac{u}{U}=1 \text { for } y>\delta
\end{gathered}
$$

Find the profile parameters α, β and γ for this profile. Substitute into the Karman momentum integral equation to find the differential equation involving $U(x)$ which must be satisfied by $\delta(x)$. If $U(x)=C x^{\frac{1}{9}}$ the solution of this equation is of the form $\delta(x)=A x^{\frac{4}{9}}$. Show that this is so and find A (in other words the solution to the problem) in terms of C and the kinematic viscosity, ν.

Compare this answer for $\delta(x)$ with the value of $\delta_{0.99}$ from the Faulkner-Skan solution:

