An Internet Book on Fluid Dynamics

Problem 220J

A fire nozzle is to be used at an elevation of 10 m above the level of a reservoir. The velocity of the jet is to be $20 \mathrm{~m} / \mathrm{s}$ and the flow is provided by a pump:

The loss coefficient between the reservoir and the inlet to the pump is 4 and the loss coefficient between the discharge from the pump and the end of the nozzle is 3 . The ratio of the cross-sectional area of the jet to that of the pipes is 0.1 . The inlet and discharge pipes leading to and from the pump have the same cross-sectional area.

- Find the head rise (in m) that the pump must provide.
- If the pump is 75% efficient find the power required to drive the pump in $\mathrm{kg} \mathrm{m} \mathrm{m}^{2} / \mathrm{s}^{3}$.

