An Internet Book on Fluid Dynamics

Problem 205D

A wind tunnel is constructed primarily of 6 m . diameter piping arranged with four 90° elbows as shown in the sketch below.

The working section is $3 m$ in diameter and is preceded by a nozzle and followed by a diffuser. A fan is installed to create the flow and is 80% efficient. If the tunnel is to achieve an air velocity of $80 \mathrm{~m} / \mathrm{s}$ in the working section, find the power which must be provided to the fan (in $H P$ where $1 H P=746 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{3}$). Assume the following losses occur in the tunnel:

1. A loss in each of the four corner bends equivalent to a length of 20 diameters of the large piping.
2. A friction factor, f, of 0.02 in the $138 m$ of $6 m$ diameter pipe.
3. A total loss in the nozzle, working section and diffuser equivalent to one fifth of the velocity head (the $\frac{1}{2} \rho u^{2}$) in the working section.

Air at these speeds can be assumed essentially incompressible with a density of $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.

