Problem 150N

A spherical gas bubble of radius, R, is expanding at a radial velocity, V, in a Newtonian liquid of viscosity, μ , and density, ρ . The expansion is spherically symmetric so that the only non-zero velocity in the liquid is u_r , the radial velocity. The surface tension of the interface is S. What is the relation between the gas pressure, p_G , and the pressure, p, in the liquid immediately surrounding the bubble? The answer includes R, V, μ , ρ and S.

Note: The constitutive laws for a Newtonian liquid when written in spherical coordinates, (r, θ, ϕ) , with velocities u_r , u_{θ} , u_{ϕ} in the r, θ, ϕ directions become:

$$\sigma_{rr} = -p + 2\mu \frac{\partial u_r}{\partial r} \quad ; \quad \sigma_{\theta\theta} = -p + 2\mu \left(\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_r}{r} \right)$$
$$\sigma_{\phi\phi} = -p + 2\mu \left(\frac{1}{r\sin\theta} \frac{\partial u_{\phi}}{\partial \phi} + \frac{u_r}{r} + \frac{u_{\theta}\cot\theta}{r} \right)$$
$$\sigma_{r\theta} = \mu \left(r \frac{\partial}{\partial r} \left(\frac{u_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \right) \quad ; \quad \sigma_{r\phi} = \mu \left(\frac{1}{r\sin\theta} \frac{\partial u_r}{\partial \phi} + r \frac{\partial}{\partial r} \left(\frac{u_{\phi}}{r} \right) \right)$$
$$\sigma_{\theta\phi} = \mu \left(\frac{1}{r\sin\theta} \frac{\partial u_{\theta}}{\partial \phi} + \frac{\sin\theta}{r} \frac{\partial}{\partial \theta} \left(\frac{u_{\phi}}{\sin\theta} \right) \right)$$