An Internet Book on Fluid Dynamics

Problem 150N

A spherical gas bubble of radius, R, is expanding at a radial velocity, V, in a Newtonian liquid of viscosity, μ, and density, ρ. The expansion is spherically symmetric so that the only non-zero velocity in the liquid is u_{r}, the radial velocity. The surface tension of the interface is S. What is the relation between the gas pressure, p_{G}, and the pressure, p, in the liquid immediately surrounding the bubble? The answer includes R, V, μ, ρ and S.

Note: The constitutive laws for a Newtonian liquid when written in spherical coordinates, (r, θ, ϕ), with velocities $u_{r}, u_{\theta}, u_{\phi}$ in the r, θ, ϕ directions become:

$$
\begin{gathered}
\sigma_{r r}=-p+2 \mu \frac{\partial u_{r}}{\partial r} \quad ; \quad \sigma_{\theta \theta}=-p+2 \mu\left(\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r}}{r}\right) \\
\sigma_{\phi \phi}=-p+2 \mu\left(\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}+\frac{u_{r}}{r}+\frac{u_{\theta} \cot \theta}{r}\right) \\
\sigma_{r \theta}=\mu\left(r \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}\right) \quad ; \quad \sigma_{r \phi}=\mu\left(\frac{1}{r \sin \theta} \frac{\partial u_{r}}{\partial \phi}+r \frac{\partial}{\partial r}\left(\frac{u_{\phi}}{r}\right)\right) \\
\sigma_{\theta \phi}=\mu\left(\frac{1}{r \sin \theta} \frac{\partial u_{\theta}}{\partial \phi}+\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}\left(\frac{u_{\phi}}{\sin \theta}\right)\right)
\end{gathered}
$$

