An Internet Book on Fluid Dynamics

Problem 150L

In cylindrical coordinates, (r, θ, z), the Navier-Stokes equations of motion for an incompressible fluid of constant dynamic viscosity, μ, and density, ρ, are

$$
\begin{gathered}
\rho\left[\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r}\right]=-\frac{\partial p}{\partial r}+f_{r}+\mu\left[\nabla^{2} u_{r}-\frac{u_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right] \\
\rho\left[\frac{D u_{\theta}}{D t}+\frac{u_{\theta} u_{r}}{r}\right]=-\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta}+\mu\left[\nabla^{2} u_{\theta}-\frac{u_{\theta}}{r^{2}}+\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}\right] \\
\rho \frac{D u_{z}}{D t}=-\frac{\partial p}{\partial z}+f_{z}+\mu \nabla^{2} u_{z}
\end{gathered}
$$

where u_{r}, u_{θ}, u_{z} are the velocities in the r, θ, z cylindrical coordinate directions, p is the pressure, f_{r}, f_{θ}, f_{z} are the body force components in the r, θ, z directions and the operators $D / D t$ and ∇^{2} are

$$
\begin{aligned}
& \frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+u_{z} \frac{\partial}{\partial z} \\
& \nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{aligned}
$$

Now consider the steady, planar, incompressible, viscous flow between two concentric cylinders. The inner cylinder has radius, a, and is rotating at an angular velocity, Ω (radians/second). The outer cylinder has radius, b, and is static. There is no flow in the direction parallel to the axis of the cylinders so only the velocity, u_{θ}, is non-zero. Body forces are to be neglected. The density of the fluid is denoted by ρ. Find:

- (a) The velocity distribution, $u_{\theta}(r)$, in the gap between the two cylinders.
- (b) The difference between the pressure on the outer surface of the inner cylinder and the pressure on the inner surface of the outer cylinder.

Note: The solution of the ordinary differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}-\frac{y}{x^{2}}=0 \quad \text { is } \quad y=A / x+B x
$$

where A and B are constants.

