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Problem 150L

In cylindrical coordinates, (r, θ, z), the Navier-Stokes equations of motion for an incompressible fluid of constant dynamic
viscosity, µ, and density, ρ, are
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where ur, uθ, uz are the velocities in the r, θ, z cylindrical coordinate directions, p is the pressure, fr, fθ, fz are the body force
components in the r, θ, z directions and the operators D/Dt and �2 are

D

Dt
=

∂

∂t
+ ur

∂

∂r
+

uθ

r

∂

∂θ
+ uz

∂

∂z

�2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+

∂2

∂z2

****************************************************

Now consider the steady, planar, incompressible, viscous flow between two concentric cylinders. The inner cylinder has radius,
a, and is rotating at an angular velocity, Ω (radians/second). The outer cylinder has radius, b, and is static. There is no flow
in the direction parallel to the axis of the cylinders so only the velocity, uθ, is non-zero. Body forces are to be neglected. The
density of the fluid is denoted by ρ. Find:

• (a) The velocity distribution, uθ(r), in the gap between the two cylinders.

• (b) The difference between the pressure on the outer surface of the inner cylinder and the pressure on the inner surface
of the outer cylinder.

Note: The solution of the ordinary differential equation
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where A and B are constants.


