An Internet Book on Fluid Dynamics

Problem 150J

In spherical coordinates, (r, θ, ϕ), the Navier-Stokes equations of motion for an incompressible fluid with uniform viscosity are:

$$
\begin{array}{r}
\rho\left[\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}+u_{\phi}^{2}}{r}\right]=-\frac{\partial p}{\partial r}+f_{r}+\mu\left[\nabla^{2} u_{r}-\frac{2 u_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}-\frac{2 u_{\theta} \cot \theta}{r^{2}}-\frac{2}{r^{2} \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}\right] \\
\rho\left[\frac{D u_{\theta}}{D t}+\frac{u_{\theta} u_{r}}{r}-\frac{u_{\phi}^{2} \cot \theta}{r}\right]=-\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta}+\mu\left[\nabla^{2} u_{\theta}+\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}}{r^{2} \sin \theta \sin \theta}-\frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}\right] \\
\rho\left[\frac{D u_{\phi}}{D t}+\frac{u_{\phi} u_{r}}{r}+\frac{u_{\theta} u_{\phi} \cot \theta}{r}\right]=-\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi}+f_{\phi}+\mu\left[\nabla^{2} u_{\phi}+\frac{2}{r^{2} \sin \theta} \frac{\partial u_{r}}{\partial \phi}-\frac{u_{\phi}}{r^{2} \sin \theta \sin \theta}+\frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial u_{\theta}}{\partial \phi}\right]
\end{array}
$$

where $u_{r}, u_{\theta}, u_{\phi}$ are the velocities in the r, θ, ϕ directions, p is the pressure, ρ is the fluid density and $f_{r}, f_{\theta}, f_{\phi}$ are the body force components. The Lagrangian or material derivative is

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+\frac{u_{\phi}}{r \sin \theta} \frac{\partial}{\partial \phi}
$$

and the Laplacian operator is

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin \theta \sin \theta} \frac{\partial^{2}}{\partial^{2} \phi}
$$

Moreover, for an incompressible fluid the equation of continuity in spherical coordinates is

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}=0
$$

and for an incompressible, Newtonian fluid

$$
\begin{gathered}
\sigma_{r r}=-p+2 \mu \frac{\partial u_{r}}{\partial r} \quad ; \quad \sigma_{\theta \theta}=-p+2 \mu\left(\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r}}{r}\right) \\
\sigma_{\phi \phi}=-p+2 \mu\left(\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}+\frac{u_{r}}{r}+\frac{u_{\theta} \cot \theta}{r}\right) \\
\sigma_{r \theta}=\mu\left(r \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}\right) \quad ; \quad \sigma_{r \phi}=\mu\left(\frac{1}{r \sin \theta} \frac{\partial u_{r}}{\partial \phi}+r \frac{\partial}{\partial r}\left(\frac{u_{\phi}}{r}\right)\right) \\
\sigma_{\theta \phi}=\mu\left(\frac{1}{r \sin \theta} \frac{\partial u_{\theta}}{\partial \phi}+\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}\left(\frac{u_{\phi}}{\sin \theta}\right)\right)
\end{gathered}
$$

$$
* *
$$

An underwater explosion creates a purely radial flow ($u_{\theta}=u_{\phi}=0$ and $\partial / \partial \theta=0$ and $\partial / \partial \phi=0$) in water surrounding a bubble whose radius, denoted by $R(t)$, is increasing with time. Assume that the water is incompressible. Derive the basic equation of bubble dynamics (the Rayleigh-Plesset equation) which is an ordinary differential equation connecting the bubble radius, $R(t)$, to the pressure in the bubble, p_{b} (assumed uniform), and the pressure in the liquid far from the bubble, p_{∞}. Neglect surface tension.

