An Internet Book on Fluid Dynamics

Problem 150F

In cylindrical coordinates, (r, θ, z), the Navier-Stokes equations of motion for an incompressible fluid of constant dynamic viscosity, μ, and density, ρ, are

$$
\begin{gathered}
\rho\left[\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r}\right]=-\frac{\partial p}{\partial r}+f_{r}+\mu\left[\nabla^{2} u_{r}-\frac{u_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right] \\
\rho\left[\frac{D u_{\theta}}{D t}+\frac{u_{\theta} u_{r}}{r}\right]=-\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta}+\mu\left[\nabla^{2} u_{\theta}-\frac{u_{\theta}}{r^{2}}+\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}\right] \\
\rho \frac{D u_{z}}{D t}=-\frac{\partial p}{\partial z}+f_{z}+\mu \nabla^{2} u_{z}
\end{gathered}
$$

where u_{r}, u_{θ}, u_{z} are the velocities in the r, θ, z cylindrical coordinate directions, p is the pressure, f_{r}, f_{θ}, f_{z} are the body force components in the r, θ, z directions and the operators $D / D t$ and ∇^{2} are

$$
\begin{aligned}
& \frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+u_{z} \frac{\partial}{\partial z} \\
& \nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{aligned}
$$

Find the steady laminar flow in an annulus between an inner cylinder of radius, a, which is at rest and a concentric outer cylinder of radius, b, which is rotating about its axis with angular velocity, Ω. Assume the axial velocity, u_{z}, is everywhere zero as are all derivatives with respect to z; furthermore assume that $u_{r}=0$ and that all derivatives with respect to θ are zero. Find:
[1] the velocity distribution $u_{\theta}(r)$ within the annulus
[2] the difference in the pressures at the surfaces of the inner and outer cylinders
[3] the shear stresses acting on the surfaces of the inner and outer cylinders
[4] the power required to rotate the outer cylinder
[Note: The general solution of the differential equation:

$$
\frac{d^{2} X}{d r^{2}}+\frac{1}{r} \frac{d X}{d r}-\frac{X}{r^{2}}=0
$$

is

$$
X=A r+\frac{B}{r}
$$

where A and B are integration constants.]

