An Internet Book on Fluid Dynamics

Problem 145A

Consider an idealized flow of a uniform stream around a cylinder of radius, R :

If the normal stress, $\sigma_{r r}$, and the tangential stress, $\sigma_{r \theta}$, acting on the surface of the cylinder vary with angular location, θ, according to:

$$
\begin{gathered}
\sigma_{r r}=-A \cos 2 \theta-B \cos \theta \\
\sigma_{r \theta}=C \sin \theta
\end{gathered}
$$

where A, B, and C are known constants, find an expression for the drag, D, acting on the cylinder per unit depth normal to the sketch. The drag is always defined as the component of force acting on a body in the direction of the oncoming stream.

What is the form drag?

What is the skin friction drag?

