An Internet Book on Fluid Dynamics

Problem 140A

Consider any closed contour, C, enclosing an area, A, in any planar incompressible flow (the area, A, contains only fluid):

The coordinate s is measured along the contour C and the "circulation", Γ, is defined as the line integral of the fluid velocity, \underline{u}, around the contour C :

$$
\Gamma=\int_{C} \underline{u} \cdot \underline{d s}
$$

How is the circulation related to the vorticity of the flow inside the contour, C ?
Hint: Use Stokes' thereom:

$$
\int_{C} \underline{u} \cdot \underline{d s}=\int_{A} \nabla \times \underline{u} d A
$$

