Problem 136A

Prepare a computer program to compute the coordinates of a series of points (say 100 in number) on the surface of Joukowski airfoils. Incorporate routines to evaluate the chord of the foil, c_A , the lift coefficient, C_L , and the important performance parameter, $dC_L/d\alpha$.

- (a) Plot the shape of two Joukowski foils including $(c/a = 1.1, \beta = 5^{\circ})$. Scale the coordinates so that the chord is unity.
- (b) Demonstrate graphically how the lift, C_L , and the parameter, $dC_L/d\alpha$, depend on the camber as represented by β and on the thickness as represented by c/a. (Plot C_L and $dC_L/d\alpha$ against α for a number of choices for β and c/a.) What conclusions would you draw concerning the dependence of $dC_L/d\alpha$ on the camber and thickness of the foil ?
- (c) Prepare graphs of the pressure distribution (as represented by C_p) on both the pressure and suction surfaces for the Joukowski foil c/a = 1.1, $\beta = 5^{\circ}$ at an angle of attack of 5° .
- (d) Modify the results of (c) by evaluating the coordinate s measured along the surface from the stagnation point and plotting C_p as a function of distance from the stagnation point in both directions. [You will use this information later for a boundary layer calculation.]
- (e) Describe how you would evaluate the added masses, M_{11} , M_{12} , M_{21} , and M_{22} where the indices 1 and 2 denote rectilinear motion in x and y directions. If there is time and if you so wish you might consider computing these added masses (non-dimensionalized by ρc_A^2).