An Internet Book on Fluid Dynamics

Problem 120K

This question is concerned with planar, incompressible, inviscid potential flow. The velocity potential, ϕ, and streamfunction, ψ, for a planar doublet oriented in the x -direction and located at the origin of an x, y coordinate system are given by $\phi=B x /\left(x^{2}+y^{2}\right)$ and $\psi=-B y /\left(x^{2}+y^{2}\right)$ where B is the strength of the doublet.

The flow of a uniform stream (velocity, U) in the x direction around an elongated body is to be constructed by placing a planar doublet at $x=a, y=0$ and another one at $x=-a, y=0$. They both have the same orientation and strength, B. For small values of B below some critical value the result is the flow around two bodies:

For values of B larger than the critical value the result is the flow around a single body:

Determine the critical value of B. Hint: at the critical value the two bodies touch at the origin.

