An Internet Book on Fluid Dynamics

Problem 120C

A hurricane can be visualized as a planar incompressible flow consisting of a rotating circular core surrounded by a potential flow:

A particular hurricane has a core of radius 40 m and air is sucked into this core at a volume flow rate per meter depth perpendicular to the diagram of $5000 \mathrm{~m}^{2} / \mathrm{s}$. Furthermore the pressure difference between the air far away from the hurricane and the air at the edge of the core is $1500 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$. The velocity of the air far from the core is assumed to be negligible. The density of the air is assumed uniform and constant at $1.2 \mathrm{~kg} / \mathrm{m}^{3}$. Find the angular rate of rotation of the hurricane and the velocity of the wind at the edge of the core.

