An Internet Book on Fluid Dynamics

Problem 120B

Consider the irrotational, planar flow of an incompressible and inviscid fluid in a right-angle corner:

The basic corner flow $\left(\psi=C x y, \phi=C\left(x^{2}-y^{2}\right) / 2\right)$ is modified by the fact that fluid is being injected into the flow through a slot at the location, B, shown above where the distance $O B$ is denoted by a. The volume rate of injection of fluid per unit depth normal to the sketch is denoted by Q. Find the location of the point between O and B where the velocity is zero (in terms of C, a and $Q)$.

