An Internet Book on Fluid Dynamics

Problem 117B

The following streamfunction, ψ, for a steady, planar, incompressible flow represents a solution for the flow around a cylinder of radius, r_{0}, with its center at the origin of a system of polar coordinates, (r, θ) :

$$
\psi=U r\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \sin \theta
$$

Here U is the velocity of the uniform stream in the direction $\theta=0$ (the x direction) far away from the cylinder. [Ignore the fact that the no-slip condition is not satisfied on the surface of the cylinder.]
(a) Find the vorticity in the flow as a function of r and θ.
(b) Find the rate of deformation, $e_{x y}$, as a function of r and θ.
(c) Find an expression for the pressure, p, in the flow as a function of r and θ. Assume that the pressure far from the origin is p_{∞} and that the body force due to gravity can be neglected.

Note: In polar coordinates, the velocities in the r and θ directions, denoted respectively by u_{r} and u_{θ}, are given by

$$
u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad ; \quad u_{\theta}=-\frac{\partial \psi}{\partial r}
$$

