## Problem 117B

The following streamfunction,  $\psi$ , for a steady, planar, incompressible flow represents a solution for the flow around a cylinder of radius,  $r_0$ , with its center at the origin of a system of polar coordinates,  $(r, \theta)$ :

$$\psi = Ur\left(1 - \frac{r_0^2}{r^2}\right)\sin\theta$$

Here U is the velocity of the uniform stream in the direction  $\theta = 0$  (the x direction) far away from the cylinder. [Ignore the fact that the no-slip condition is not satisfied on the surface of the cylinder.]

- (a) Find the vorticity in the flow as a function of r and  $\theta$ .
- (b) Find the rate of deformation,  $e_{xy}$ , as a function of r and  $\theta$ .
- (c) Find an expression for the pressure, p, in the flow as a function of r and  $\theta$ . Assume that the pressure far from the origin is  $p_{\infty}$  and that the body force due to gravity can be neglected.

Note: In polar coordinates, the velocities in the r and  $\theta$  directions, denoted respectively by  $u_r$  and  $u_{\theta}$ , are given by

$$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad ; \quad u_\theta = -\frac{\partial \psi}{\partial r}$$