An Internet Book on Fluid Dynamics

Problem 116B

In spherical coordinates, (r, θ, ϕ), the equations of motion for an inviscid fluid, Euler's equations, become:

$$
\begin{gathered}
\rho\left\{\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}+u_{\phi}^{2}}{r}\right\}=-\frac{\partial p}{\partial r}+f_{r} \\
\rho\left\{\frac{D u_{\theta}}{D t}+\frac{u_{\theta} u_{r}}{r}-\frac{u_{\phi}^{2} \cot \theta}{r}\right\}=-\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta} \\
\rho\left\{\frac{D u_{\phi}}{D t}+\frac{u_{\phi} u_{r}}{r}+\frac{u_{\theta} u_{\phi} \cot \theta}{r}\right\}=-\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi}+f_{\phi}
\end{gathered}
$$

where $u_{r}, u_{\theta}, u_{\phi}$ are the velocities in the r, θ, ϕ directions, p is the pressure, ρ is the fluid density and $f_{r}, f_{\theta}, f_{\phi}$ are the body force components. The Lagrangian or material derivative is

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+\frac{u_{\phi}}{r \sin \theta} \frac{\partial}{\partial \phi}
$$

For an incompressible fluid the equation of continuity in spherical coordinates is

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}=0
$$

An underwater explosion creates a purely radial flow $\left(u_{\theta}=u_{\phi}=0\right.$ and $\partial / \partial \theta=0$ and $\left.\partial / \partial \phi=0\right)$ in water surrounding a bubble whose radius, denoted by $R(t)$, is increasing with time. Since the u_{r} velocity at the surface of the bubble must be equal to $d R / d t$ show that the equation of continuity requires that

$$
u_{r}=\frac{R^{2}}{r^{2}} \frac{d R}{d t}
$$

Assume that the water is incompressible. Also note that, since R is a function only of time, there is no ambiguity about its time derivative and hence $d R / d t$ is just an ordinary time derivative.
$* *$

Now use the equations of motion to find the pressure, $p(r, t)$, at any position, r, in the water. Neglect all body forces. One integration step has to be performed which introduces an integration constant; this can be evaluated by assuming the pressure far from the bubble $(r \rightarrow \infty)$ is known (denoted by p_{∞}).

Finally show that, if one neglects surface tension so that the pressure in the bubble, p_{B}, is the same as the pressure in the water at $r=R$, then

$$
p_{B}-p_{\infty}=\rho\left\{R \frac{d^{2} R}{d t^{2}}+\frac{3}{2}\left(\frac{d R}{d t}\right)^{2}\right\}
$$

This is known as the Rayleigh equation for bubble dynamics.

