An Internet Book on Fluid Dynamics

Problem 116A

In cylindrical coordinates, (r, θ, z), the equations of motion for an inviscid fluid, Euler's equations, become:

$$
\begin{gathered}
\rho\left[\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r}\right]=-\frac{\partial p}{\partial r}+f_{r} \\
\rho\left[\frac{D u_{\theta}}{D t}+\frac{u_{\theta} u_{r}}{r}\right]=-\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta} \\
\rho \frac{D u_{z}}{D t}=-\frac{\partial p}{\partial z}+f_{z}
\end{gathered}
$$

where u_{r}, u_{θ}, u_{z} are the velocities in the r, θ, z directions, p is the pressure, ρ is the fluid density and f_{r}, f_{θ}, f_{z} are the body force components. The Lagrangian derivative is

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+u_{z} \frac{\partial}{\partial z}
$$

$* *$
A cylinder is rotated at a constant angular velocity denoted by Ω. The cylinder contains a compressible fluid which rotates with the cylinder so that the fluid velocity at any point is $u_{\theta}=\Omega r\left(u_{r}=u_{z}=0\right)$. If the density of the fluid, ρ, is related to the pressure, p, by the polytropic relation

$$
p=A \rho^{k}
$$

where A and k are known constants, find the pressure distribution, $p(r)$, assuming that the pressure, p_{0}, at the center $(r=0)$ is known. Neglect all body forces.

