An Internet Book on Fluid Dynamics

Problem 115D

Consider the following streamfunction, ψ, for a planar incompressible flow:

$$
\psi=U r\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \sin \theta
$$

where U and r_{0} are constants and r, θ are polar coordinates.
(a) Find and sketch the streamline corresponding to $r=r_{0}$.
(b) Find and add to your sketch the streamlines for $\theta=0, r>r_{0}$ and for $\theta=\pi, r>r_{0}$. Note on your sketch the value of ψ along these lines and along the streamline for $r=r_{0}$.
(c) Make a rough estimate of some other streamlines with $\psi>0$ and show the form of these streamlines in your sketch.
(d) What is the magnitude and direction of the flow for $r \gg r_{0}$?
(e) Guided by your sketch, estimate what real flow might have the above streamfunction.

Note: In polar coordinates, the velocities in the r and θ directions, denoted respectively by u_{r} and u_{θ}, are given by

$$
u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad ; \quad u_{\theta}=-\frac{\partial \psi}{\partial r}
$$

