Problem 114C:

Consider the elemental control volume in cylindrical coordinates (r, θ, z) as sketched below: Show that

mass conservation in this coordinate system leads to the following form of the equation of continuity:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial\left(\rho r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial\left(\rho u_{\theta}\right)}{\partial \theta}+\frac{\partial\left(\rho u_{z}\right)}{\partial z}=0 \tag{1}
\end{equation*}
$$

where $\left(u_{r}, u_{\theta}, u_{z}\right)$ denote the velocity components in the (r, θ, z) directions.

