An Internet Book on Fluid Dynamics

Problem 108F

A cube with sides, L, and density, ρ_{S}, floats in a pool of water whose density is ρ_{L} and whose surface tension is S. The acceleration due to gravity is denoted by g. The cube is made of hydrophobic material with a contact angle of $\pi-\alpha$ so that it floats in the following configuration:

Because the material is hydrophobic the density of the cube can be greater than that of the water and it will still float. Assuming that

- $\alpha=\pi / 4$
- the surface tension, S, is such that $\left(S / \rho_{L} g L^{2}\right)=0.1$
- the elevation difference, h, between the line of contact on the sides of the cube and the water surface far from the cube is given by $h=\cot \alpha\left(S / \rho_{L} g\right)^{\frac{1}{2}}$.
- it is stipulated that the water surface can only contact the cube along the vertical faces of that cube.
determine the maximum specific gravity of the cube $\left(\rho_{S} / \rho_{L}\right)$ for which the cube will still float.

