An Internet Book on Fluid Dynamics

Problem 101B

The pressure and density of the atmosphere at the surface of the planet Venus are respectively $9.26 \times 10^{6} \mathrm{~kg} / \mathrm{m} \mathrm{s}^{2}(91.4 \mathrm{~atm})$ and $63 \mathrm{~kg} / \mathrm{m}^{3}$ and we shall denote these values by p_{s} and ρ_{s}. Up to an altitude of 40 km the atmosphere behaves adiabatically; that is to say $p=C \rho^{\gamma}$ where p, ρ denote pressure and density, γ is the ratio of specific heats $(\gamma=1.2$ approximately for the Venetian atmosphere) and C is a constant. Assuming the acceleration due to gravity, g, has a constant value of $8.7 \mathrm{~m} / \mathrm{s}^{2}$ find

1. An expression for the pressure, p, as a function of the altitude, y, and the constants p_{s}, ρ_{s}, γ and g.
2. The pressure at an altitude of 30 km .
