An Internet Book on Fluid Dynamics

Problem 101B

The pressure and density of the atmosphere at the surface of the planet Venus are respectively $9.26 \times 10^6~kg/m~s^2~(91.4~atm)$ and $63~kg/m^3$ and we shall denote these values by p_s and ρ_s . Up to an altitude of 40~km the atmosphere behaves adiabatically; that is to say $p = C \rho^{\gamma}$ where p, ρ denote pressure and density, γ is the ratio of specific heats ($\gamma = 1.2$ approximately for the Venetian atmosphere) and C is a constant. Assuming the acceleration due to gravity, g, has a constant value of $8.7~m/s^2$ find

- 1. An expression for the pressure, p, as a function of the altitude, y, and the constants p_s , ρ_s , γ and g.
- 2. The pressure at an altitude of 30 km.