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Thermal Effects on Growth

In sections (Ngd) through (Nge) some of the characteristics of bubble dynamics in the absence of thermal
effects were explored. It is now necessary to examine the regime of validity of those analyses. First we
evaluate the magnitude of the thermal term (2) in equation (Ngc4) (see also equation (Ngcl4)) that was
neglected in order to produce equation (Ngd2).

First examine the case of bubble growth. The asymptotic growth rate given by equation (Ngd8) is constant
and hence in the characteristic case of a constant ps, terms (1), (3), (4), (5), and (6) in equation (Ngc2)
are all either constant or diminishing in magnitude as time progresses. Note that a constant, asymptotic
growth rate corresponds to the case

n=1 ; R ={2(pv —pL)/3pL}? (Ngfl)
in equation (Ngcll). Consequently, according to equation (Ngcl4), the thermal term (2) in its linearized
form for small (7o, — Tp) will be given by

term(2) = X(Th)C(1)R*t2 (Ngf2)

Under these conditions, even if the thermal term is initially negligible, it will gain in magnitude relative to
all the other terms and will ultimately affect the growth in a major way. Parenthetically it should be added
that the Plesset-Zwick assumption of a small thermal boundary layer thickness, 7, relative to R can be
shown to hold throughout the inertially controlled growth period since d7 increases like (DLt)% whereas
R is increasing linearly with ¢t. Only under circumstances of very slow growth might the assumption be
violated.

Using the relation (Ngf2), one can therefore define a critical time, ¢.; (called the first critical time), during
growth when the order of magnitude of term (2) in equation (Ngc2) becomes equal to the order of magnitude
of the retained terms, as represented by (dR/dt)?. This first critical time is given by
(pv —pi,) 1
fog = —— 207 . Ngf3

1 L =2 (Ngf3)
where the constants of order unity have been omitted for clarity. Thus t.; depends not only on the tension
(py — p%.)/pr but also on 3(T,), a purely thermophysical quantity that is a function only of the liquid
temperature. Recalling equation (Ngcl5),
£2 2
S(T) = # (Ngf4)
picpLToD}

it can be anticipated that Y2 will change by many, many orders of magnitude in a given liquid as the
temperature T, is varied from the triple point to the critical point since X2 is proportional to (pv/pr)*.
As a result the critical time, t.;, will vary by many orders of magnitude. Some values of ¥ for a number
of liquids are plotted in figure 1 as a function of the reduced temperature 7'/T¢. As an example, consider
a typical cavitating flow experiment in a water tunnel with a tension of the order of 10* kg/m s*. Since
water at 20°C' has a value of ¥ of about 1 m/s%, the first critical time is of the order of 10s, which is
very much longer than the time of growth of bubbles. Hence the bubble growth occurring in this case is
unhindered by thermal effects; it is inertially controlled growth. If, on the other hand, the tunnel water
were heated to 100°C or, equlvalently, one observed bubble growth in a pot of boiling water at superheat
of 2°K, then since ¥ ~ 103 m/sz at 100°C the first critical time would be 10us. Thus virtually all the
bubble growth observed would be thermally controlled.
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Figure 1: Values of the thermodynamic parameter, 3., for various saturated liquids as a function of the reduced temperature,
T/Tc.



