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Atmospheres

In Fluid Statics, the vertical gradient of the pressure, p, in a fluid at rest was found to be

dp

dy
= −ρg (Ce1)

where y is the elevation measured vertically upward, ρ(y) is the fluid density and g(y) is the acceleration
due to gravity. Though both ρ(y) and g(y) may be functions of elevation we will consider only atmospheres
which are thin compared with the radius of the planet (or other extra-terrestrial object) to which they
belong so that g may be considered uniform.

It is convenient to choose sea level (or the fluid surface) as the origin of y and normal atmospheric
pressure at sea level (or the surface) as the reference pressure p0. Then, to proceed with the integration of
the above differential equation, we need to know how the density varies within the atmosphere. In the most
general circumstances, we recognize that, thermodynamically, ρ is determined knowing the temperature and
pressure of the fluid and its equation of state. Of these two variables, the temperature and pressure, the
temperature variations are the most complex since they depend on many factors including the absorption
of solar radiation at different altitudes and the mass and energy exchange processes that occur as a result
of mixing between the layers at different altitudes. There are several empirical ways to overcome these
complications and we will illustrate two of these methods by reference to two planetary atmospheres,
that of the Earth and that of Venus. For reference, we include in Figure 1 data on the U.S. standard
atmosphere; this shows an average or standard atmosphere as the variations in temperature and pressure
with the altitude. Moreover, the same data is presented in Table 1.

TABLE I. The U.S. Standard Atmosphere.

Altitude Temperature Pressure Density Altitude Temperature Pressure Density
(m) (◦K) (kPa) (kg/m3) (m) (◦K) (kPa) (kg/m3)

-1000 294.6 111.3 1.135 4500 258.9 57.8 0.777
-500 291.4 107.5 1.285 5000 255.7 54.0 0.736
0 288.2 101.3 1.225 10000 223.3 26.5 0.414

500 284.9 95.5 1.167 11000 216.7 22.7 0.365
1000 281.7 89.9 1.112 11100 216.7 22.4 0.359
1500 278.4 84.5 1.058 15000 216.7 12.1 0.195
2000 275.2 79.5 1.001 20000 216.7 5.3 0.073
2500 271.9 74.7 0.957 25000 221.6 2.6 0.039
3000 268.7 70.1 0.909 30000 226.5 1.2 0.018
3500 265.4 65.8 0.863 35000 236.5 0.6 0.008
4000 262.2 61.7 0.819

The first way to proceed is to assume that the complications of radiation and mixing result in a given
temperature distribution, T (y), specifically the temperature distribution for the Earth’s atmosphere in
Table 1. Furthermore we know that the gases in the Earth’s atmosphere closely follow the perfect gas
law, p = ρRT (where R is the gas constant, so that the density is given by

ρ(y) =
p

RT (y)
(Ce2)



Figure 1: The U.S. standard atmosphere showing the variations in temperature and pressure with altitude.

As an example we will focus on the troposphere (0 < y < 12, 000 m) where, as illustrated in Figure 1, the
temperature is approximately linear with altitude according to

T (y) = (288 − βy) (in ◦K) (Ce3)

where the constant β is 6.5 × 10−3 ◦K/m. Substituting this into the equation for dp/dy and rearranging
it follows that

dp

p
= − gdy

R(288 − βy)
(Ce4)

and integrating

ln p =
g

βR ln (288 − βy) + constant (Ce5)

Finally establishing the boundary condition that the pressure at the surface y = 0 is denoted by p0 this
can be written as

p

p0
=

(
1 − βy

288

) g
βR

(Ce6)

This pressure distribution in the troposphere is also tabulated in Table 1. Note, for example, at an altitude
of 10, 000 m (just above the summit of Everest) the pressure is 26.5 kPa or roughly one quarter of the
pressure at sea level.

A second possible way to proceed is to assume that the mixing between the layers of the atmosphere
is sufficiently rapid that the gas does not have time to gain or lose heat as it moves from one altitude to
another. Then the changes in pressure and density will be adiabatic and it is appropriate to set

p(y) = C(ρ(y))γ (Ce7)



where C is a proportionality constant and γ is the ratio of specific heats of the gas or gas mixture. The
constant C is determined from the pressure and density at the surface, ps and ρs. Substitution into equation
(Ce1) leads to the differential equation

dp

p
1
γ

= −gdy

C
1
γ

(Ce8)

and integrating from the surface y = 0 up to some altitude y we have∫ p

ps

dp

p
1
γ

= −
∫ y

0

gdy

C
1
γ

(Ce9)

which yields the following expression for the pressure as a function of altitude:

p =

[
(1 − γ)

γ

gy

C
1
γ

+ (ps)
(1−γ)

γ

] γ
(1−γ)

(Ce10)

Thus the pressure decreases with altitude since γ > 1. Note that for small altitudes, y, this can be
expanded to yield the expected result

p = ps − ρsgy + O(y2) (Ce11)

The pressure and density of the atmosphere at the surface of the planet Venus are respectively 9260 kPa
and 63 kg/m3 and the acceleration due to gravity is 8.7 m/s2. Up to an altitude of about 40 km the
atmosphere is approximately adiabatic with a γ of about 1.2. The above equation (Ce10) then yields a
pressure p at an altitude of 30 km of 1120 kPa or about one eighth the value at the surface. In contrast
the linear term in equation (Ce11) would yield a negative pressure at this altitude.

EXERCISES

Problem Number Subject Solution

101A On the pressure in a molten earth Solution
101B On the adiabatic atmosphere of Venus Solution
101C On the pressure in a fluid planet Solution


