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Linear Cascade Analyses

The fluid mechanics of a linear cascade will now be examined in more detail, so that the role played by
the geometry of the blades and information on the resulting forces on individual blades may be used to
supplement the analysis of section (Mbbg). Referring to the periodic control volume indicated in figure 1,
and applying the momentum theorem to this control volume, the forces, Fx and Fy, imposed by the fluid
on each blade (per unit depth normal to the sketch), are given by

Fx = −(p2 − p1)h (Mbcb1)

Fy = ρhvm(w1 cosβ1 −w2 cos β2) (Mbcb2)

where, as a result of continuity, vm1 = vm2 = vm. Note that Fy is entirely consistent with the expression
(Mbbg5) for the torque, T .

To proceed, we define the vector mean of the relative velocities, w1 and w2, as having a magnitude wM

and a direction βM , where by simple geometry

cotβM =
1

2
(cotβ1 + cot β2) (Mbcb3)

wM = vm

/
sin βM (Mbcb4)

It is conventional and appropriate (as discussed below) to define the lift, L, and the drag, D, components

of the total force on a blade, (F 2
x + F 2

y )
1
2 , as the components normal and tangential to the vector mean

velocity, wM . More specifically, as shown in figure 1,

L = −Fx cos βM + Fy sinβM (Mbcb5)

Figure 1: Schematic of a linear cascade showing the blade geometry, the periodic control volume and the definition of the
lift, L, and drag, D, forces on a blade.



D = Fx sin βM + Fy cos βM (Mbcb6)

where L and D are forces per unit depth normal to the sketch. Nondimensional lift and drag coefficients
are defined as

CL = L
/1

2
ρw2

Mc ; CD = D
/1

2
ρw2

Mc (Mbcb7)

The list of fundamental relations is complete if we write the expression for the pressure difference across
the cascade as

p1 − p2 = ΔpT
L − ρ

2

(
w2

1 −w2
2

)
(Mbcb8)

where ΔpT
L denotes the total pressure loss across the cascade caused by viscous effects. In frictionless

flow, ΔpT
L = 0, and the relation (Mbcb8) becomes the Bernoulli equation in rotating coordinates (equation

(Mbbg1) with r1 = r2 as is appropriate here). A nondimensional loss coefficient, f , is defined as

f = ΔpT
L

/
ρw2

M (Mbcb9)

Equations (Mbcb1) through (Mbcb9) can be manipulated to obtain expressions for the lift and drag
coefficients as follows

CD = 2f sinβM

/
s (Mbcb10)

CL =
2

s

[
ψ

φ
sinβM +

f(φ− cosβM sinβM)

sinβM

]
(Mbcb11)

where s = c/h is the solidity, ψ is the head coefficient, (pT
2 − pT

1 )
/
ρΩ2R2, and φ is the flow coefficient,

vm

/
ΩR. Note that in frictionless flow CD = 0 and CL = 2ψ sinβM(1 − 2 sin2 βM)

/
φs; then the total

force (lift) on the foil is perpendicular to the direction defined by the βM of equation (Mbcb3). This
provides confirmation that the directions we chose in defining L and D (see figure 1) were appropriate for,
in frictionless flow, CD must indeed be zero.

Also note that equations (Mbcb1) through (Mbcb9) yield the head/flow characteristic given by

ψ = φ (cot β1 − cotβ2) − fφ2

sin2 βM

(Mbcb12)

which, when there is no inlet swirl or prerotation so that tanβ1 = φ, becomes

ψ = 1 − φ cot β2 − f

[
φ2 +

1

4
(1 + φ cot β2)

2

]
(Mbcb13)

In frictionless flow, when the discharge is parallel with the blades (β2 = βb2), this, of course, reduces to
the characteristic equation (Mbbg4).

Note also that the use of the relation (Mbcb13) allows us to write the expression (Mbcb11) for the lift
coefficient as

CL =
2

s
[2 sin βM(cotβ1 − cotβM) − f cos βM ] (Mbcb14)

Figure 2 presents examples of typical head/flow characteristics resulting from equation (Mbcb13) for some
chosen values of β2 and the friction coefficient, f . It should be noted that, in any real turbomachine, f
will not be constant but will vary substantially with the flow coefficient, φ, which determines the angle of
incidence and other flow characteristics. More realistic cases are presented a little later in figure 4.

The observant reader will have noted that all of the preceding equations of this section involve only the
inclinations of the flow and not of the blades, which have existed only as ill-defined objects that achieve



Figure 2: Calculated head/flow characteristics for some linear cascades.

the turning of the flow. In order to progress further, it is necessary to obtain a detailed solution of the
flow, one result of which will be the connection between the flow angles (βM , β2) and the geometry of
the blades, including the blade angles (βb, βb1, βb2). A large literature exists describing methods for the
solutions of these flows, but such detail is beyond the scope of this text. As in most high Reynolds number
flows, one begins with potential flow solutions, for which the reader should consult a modern text, such as
that by Horlock (1973), or the valuable review by Roudebush (1965). König (1922) produced one of the
earliest potential flow solutions, namely that for a simple flat plate cascade of infinitely thin blades. This
was used to generate figure 3. Such potential flow methods must be supplemented by viscous analyses of
the boundary layers on the blades and the associated wakes in the discharge flow. Leiblein (1965) provided
an excellent review of these viscous flow methods, and some of his basic methodology will be introduced
later.

To begin with, however, one can obtain some useful insights by employing our basic knowledge and under-
standing of lift and drag coefficients obtained from tests, both those on single blades (airfoils, hydrofoils)
and those on cascades of blades. One such observation is that the lift coefficient, CL, is proportional to
the sine of the angle of attack, where the angle of attack is defined as the angle between the mean flow
direction, βM , and a mean blade angle, βbM . Thus

CL = mL sin(βbM − βM) (Mbcb15)

where mL is a constant, a property of the blade or cascade geometry. In the case of frictionless flow (f = 0),
the expression (Mbcb15) may be substituted into equation (Mbcb14), resulting in an expression for βM .
When this is used with equation (Mbcb13), the following head/flow characteristic results:

ψ =
2mLs sinβbM

4 +mLs sinβbM

[
1 − φ

(
cot βbM +

vθ1

vm1

)]
(Mbcb16)

where, for convenience, the first factor on the right-hand side is denoted by

ψ0 =
2mLs sinβbM

4 +mLs sinβbM
=

[
1 +

cotβ2 − cot βb2

cot β1 − cotβ2

]−1

(Mbcb17)

The factor, ψ0, is known as the frictionless shut-off head coefficient, since it is equal to the head coefficient
at zero flow rate. The second expression for ψ0 follows from the preceding equations, and will be used
later. Note that, unlike equation (Mbcb13), the head/flow characteristic of equation (Mbcb16) is given



Figure 3: The performance parameter, ψ0, as a function of solidity, s, for flat plate cascades with different blade angles, βb.
Adapted by Wislicensus (1947) (see also Sabersky, Acosta and Hauptmann 1989) from the potential flow theory of König
(1922).

in terms of mL and practical quantities, such as the blade angle, βbM , and the inlet swirl or prerotation,
vθ1

/
vm1.

It is also useful to consider the drag coefficient, CD, for it clearly defines f and the viscous losses in the
cascade. Instead of being linear with angle of attack, CD will be an even function so an appropriate
empirical result corresponding to equation (Mbcb15) would be

CD = CD0 +mD sin2 (βbM − βM) (Mbcb18)

where CD0 and mD are constants. Some head/flow characteristics resulting from typical values of CD0 and
mD are shown in figure 4. Note that these performance curves have a shape that is closer to practical
performance curves than the constant friction factor results of figure 2.

Figure 4: Calculated head/flow characteristics for a linear cascade using blade drag coefficients given by equation (Mbcb18)
with CD0 = 0.02. The corresponding characteristics with CD0 = mD = 0 are shown in figure 2.


