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Dynamic Characteristics of a Cavitating Propeller

In this section we examine the unsteady flow characteristics manifest by a cavitating propeller in a water
tunnel. To include the unsteady flow contributions it is necessary to revisit and revise the basic conservation
results presented in section (Mfc). One intermediate objective will be to identify the dynamic transfer
function for a cavitating propeller in a water tunnel. This is a necessary prerequisite to understanding
global instabilities of such flows such as the surge instability observed and documented by Duttweiler and
Brennen (2002). Another potential application is to the sometimes severe structural vibration that can
arise due to the interaction between the cavitation on a ship propeller and the wake of hull. The large
body of work on propeller-hull interactions has been summarized by Weitendorf (1989).

Figure 1: Schematic and notation of a propeller in a tunnel; the cavitation volume is shown in red.

Consider the one-dimensional unsteady, incompressible flow through a propeller (either cavitating or non-
cavitating) in a water tunnel as shown in Figure 1. The propeller (cross-sectional area Ap) is located on
the centerline of the tunnel whose cross-sectional area is A∗. We consider a stream tube containing the
propeller. For simplicity, it will be assumed that the flow is uniformly distributed across the propeller
stream tube and is one-dimensional. Friction and mixing losses between the inner and outer flows are
neglected.

The analysis parallels that for steady flow detailed in sections (Mfc) and (Mfg) and the notation is the
same as that used in those sections. Mass conservation requires that

vmi1A1 − vmp1Ap = −
∫ 0

−∞

∂A(x, t)

∂t
dx (Mfh1)

vmi2A2 − vmp2Ap =

∫ ∞

0

∂A(x, t)

∂t
dx (Mfh2)

vmp2Ap − vmp1Ap =
dVc

dt
dt (Mfh3)

vmi2A2 + vmo2(A
∗ − A2) − vmi1A

∗ =
dVc

dt
dt (Mfh4)



The right-hand-sides of equations (Mfh1) and (Mfh2) represent the volume change of the stream tube
upstream and downstream of the propeller; later these will be ignored for simplicity. The relation between
the pressures far upstream and far downstream is obtained by applying Bernoulli’s equation in the outer
flow as follows:

p2 − p2 =
1

2
ρ
{
v2

mi1 − v2
mo2

} − ρ

∫ ∞

−∞

∂vmo(x, t)

∂t
dx (Mfh5)

where the last term of the right-hand-side is the inertia effect in the control volume.

Now, we calculate the thrust force F produced by the propeller by applying three basic equations. First,
applying the momentum theorem to a control volume containing all the tunnel flow, we obtain;

ρv2
mi1A

∗ + p1A
∗ + F = ρv2

mo2(A
∗ − A2) + ρv2

mi2A2 + p2A
∗ +

dM

dt
(Mfh6)

The last term in the right-hand-side is rate of the change of the momentum in the control volume, repre-
sented by

dM

dt
= ρ

d

dt

[∫ ∞

−∞
{vmi(x, t)A(x, t) + vmo(x, t)(A∗ − A(x, t))}dx

]

= ρ
d

dt

[∫ ∞

0

dVc

dt
dx + A∗

∫ ∞

−∞
vmi1dx

]
= ρ

∫ ∞

0

d2Vc

dt2
dx + ρA∗

∫ ∞

−∞

dvmi1

dt
dx (Mfh7)

which yields

F =
1

2
ρ(vmi1 − vmo2)A

∗(2vmi2 + vmo2 − vmi1) + ρ(vmi2 + vmo2)
dVc

dt

+

[
ρA∗

∫ ∞

−∞

∂(vmi1 − vmo(x, t))

∂t
dx + ρ

∫ ∞

0

d2Vc

dt2
dx

]
(Mfh8)

Second, we obtain the total pressure difference across the propeller, ΔpT , from the Euler head,

ΔpT = ρRΩvθp2 = ρRΩ(RΩ − vmp2 cotβ) − ρ
c

sin β

dvmp2

dt
(Mfh9)

The last term in this equation represents the inertia effect of the fluid in the blade passage. Since the
static pressure difference, pp2 − pp1, is given by

pp2 − pp1 =
1

2
ρ
{
R2Ω2 − v2

mp2 cot β
}− ρ

c

sinβ

dvmp2

dt
(Mfh10)

the thrust force can be computed as

F = (pp2 − pp1)Ap + ρ
{
v2

mp2 − v2
mp1

}
Ap

=
1

2
ρ
{
R2Ω2 − v2

mp2 cotβ
}

Ap + ρ(vmp2 + vmp1)
dVc

dt
− ρ

Apc

sinβ

dvmp2

dt
(Mfh11)

Third, the pressures pp1 and pp2 may be related to the upstream and downstream conditions using
Bernoulli’s equation:

pp1 = p1 +
1

2
ρv2

mi1 −
1

2
ρv2

mp1 − ρ

∫ 0

−∞

∂vmi(x, t)

∂t
dx (Mfh12)

where the last term is the inertance in the stream tube. Applying Bernoulli’s equation between the outlet
of the propeller and far downstream, we obtain

pp2 = p2 +
1

2
ρ
[
v2

mi2 + v2
θp2(Ap/A2)

] − 1

2
ρ
[
v2

mp2 + v2
θp2

]
+ ρ

∫ ∞

0

∂vmi(x, t)

∂t
dx



= p2 +
1

2
ρv2

mi2 −
1

2
ρv2

mp2 +
1

2
ρ [RΩ − vmp2 cotβ]2 [(Ap/A2) − 1] + ρ

∫ ∞

0

∂vmi(x, t)

∂t
dx (Mfh13)

Then the thrust force F follows as

F = (pp2−pp1)Ap+ρ
{
v2

mp2 − v2
mp1

}
Ap

=
1

2
ρ
[{

v2
mi2 − v2

mo2

}
+ {RΩ − vmp2 cotβ}2 {(Ap/A2) − 1}]Ap

−1

2
ρ(vmp2 + vmp1)

dVc

dt
+ ρAp

∫ ∞

0

∂(vmi(x, t)− vmo(x, t))

∂t
dx (Mfh14)

For the purpose of the general discussion, we have considered all possible unsteady effects in the above

formulation, namely the effects of volume change of the stream tubes in equations (Mfh1) and (Mfh2), the
inertia effects upstream and downstream of the propeller in equations (Mfh5), (Mfh8) and (Mfh14), and the
inertia effect in the propeller in equation (Mfh11) as well as the effects of the cavity volume change dVc/dt
in equations (Mfh3) and (Mfh4). To evaluate many of these terms, we would need to know the shape of the
stream tube, which is beyond the scope of the present one-dimensional stream tube analysis. Consequently,
some compromises are needed in order to proceed. First we neglect the stream tube volume changes in
equations (Mfh1) and (Mfh2) on the basis that these cancel and thus produce no net perturbation within
the water tunnel; this may need further examination. Second, we neglect the inertance terms in equations
(Mfh5), (Mfh8) and (Mfh14) on the basis that past experience has suggested that we can consider these
contributions to be lumped into the other inertance contributions in the tunnel circuit. Again this may
need additional examination. In summary, we choose to examine only the unsteady effects associated with
dVc/dt in equations (Mfh3) and (Mfh4).

Summarizing, we note that the eight equations (Mfh1) through (Mfh14) contain eight unknowns vmo2,
vmi2, vmp2, vmp1, A1, A2, F , and p2 assuming that the propeller operating parameters vmi1, p1, RΩ, the
discharge flow angle, β, and the rate of change of the cavity volume, dVc/dt, are given. The empirical
relations for the deviation angle that were described in section (Mfg) will be used again here.

To complete the set of governing equations we need to establish a functional expression for the cavity
volume, Vc. Consistent with the understanding developed in the context of cavitating pumps it will be
assumed that cavity volume, Vc(pp1, vmp1), is a function of the inlet pressure pp1 and inflow velocity vmp1.
Then, the rate of change of the cavity volume can be expressed as

dVc

dt
= −K

dpp1

dt
− M

dvmp1

dt
(Mfh15)

where K = −∂Vc/∂pp1 and M = −∂Vc/∂vmp1 are respectively the cavitation compliance and the mass flow
gain factor (Brennen and Acosta 1973). These important parameters are non-dimensionalized as follows;

K∗

2π
= −∂(Vc/ApR)

∂σ∗ =
ρRΩ2

2Ap

∂Vc

∂pp1
=

ρΩ2

2πR
K (Mfh16)

M∗ = − ∂(Vc/ApR)

∂(vmp1/RΩ)
=

Ω

Ap

∂Vc

∂vmp1
=

Ω

πR2
M (Mfh17)

where K∗ and M∗ are the non-dimensional values of the cavitation compliance and the mass flow gain
factor used by Duttweiler and Brennen (2002). In this study, the values of K and M are estimated using
free streamline theory (Otsuka et al. 1996, Watanabe et al. 1998).



Given the steady operating characteristics developed in sections (Mfc) and (Mfg), it is valuable to consider
the quasi-static response to low frequency fluctuations of the incoming flow velocity, vmi1. For illustrative
purposes, we compare the case of A∗/Ap = 2 with that for a pump (A∗/Ap = 1). Consider first the case
when the advance ratio is larger than the critical advance ratio. As the upstream flow velocity varies, the
flow rate through the propeller varies less when A∗/Ap = 2 than when A∗/Ap = 1 (Figure 1 of section
(Mfg)). However, when the advance ratio is smaller than the critical value, this trend is reversed. If the
propeller were cavitating, these results would suggest that, at larger advance ratios, the mass flow gain
factor will be smaller for A∗/Ap = 2 than that for A∗/Ap = 1, whereas at smaller advance ratios, the
mass flow gain factor will be larger for A∗/Ap = 2. This is important since the mass flow gain factor is
responsible for cavitation instabilities of turbomachinery and a large mass flow gain factor implies a more
unstable system.

The surge instability of a cavitating propeller, reported by Duttweiler and Brennen (2002), is an example of
cavitation instability caused by a positive mass flow gain factor. They examined two different configurations
of the propeller, one in which the propeller is operated in front of a support fairing, and the other in which
the propeller is operated downstream of that fairing, and observed a violent surge instability only for the
latter case. The explanation for this difference is unknown, but one explanation might be as follows. The
presence of the fairing can be considered to be the blockage, so that the effective flow path upstream of the
propeller is smaller for the case with the propeller operated downstream of the fairing. Figure 2 of section
(Mfc) indicates that the critical value of the advance ratio is larger when the propeller is operated in the
narrower duct. So, as the advance ratio decreases, the propeller could readily shift into operation as a
pump. The result would be that the mass flow gain factor is larger for the propeller operated downstream
of the fairing.

We proceed to analyze the low frequency unsteady characteristics of the cavitating propeller. The system
of equations consists of non-linear equations. However, in order to utilize the conventional transfer function
methodology, we linearize the problem. For example, the upstream flow velocity is expressed by

vmi1 = v̄mi1 + Re
{
ṽmi1e

jωt
}

(Mfh18)

After substituting similar expressions for all the unknowns, equations (Mfh1)-(Mfh14) are then divided into
steady and unsteady parts and linearized under the assumption of small fluctuations. The unsteady parts
of the equations consist of linear equations for the unsteady components, the eight unknowns vmo2, vmi2,
vmp2, vmp1, A1, A2, F , and p2 as well as the quantities, vmi1, p1, β and dVc/dt. The unsteady component of
β is obtained by the linearized version of the equation for β in section (Mfg), which diminishes for larger
values of σ. The rate of change of cavity volume, dVc/dt, is given by equation (Mfh15).

Using the equations documented above, we can relate the downstream fluctuations to the inlet fluctuations
using the conventional transfer matrix (Brennen 1994):

{
p̃T

2

m̃2

}
=

[
T11

T21

T12

T22

]{
p̃T

1

m̃1

}
(Mfh19)

where pT and m are total pressure and mass flow rate, respectively.

Figure 2 presents a typical calculation of the transfer matrix for an advance ratio of J1 = 1.0 and duct
cross-sectional areas of A∗/Ap = 1, 2 and 10. For illustrative purposes, values of the compliance and mass
flow gain factor (K∗/2π, M∗) of (0.1, 1.0) are selected since these values are typical of those obtained
by previous researchers (Brennen 1994). The change of the exit flow angle β is neglected for simplicity,
assuming σ = ∞. Note that T21 takes a similar value for all cases while there are large differences in the
other elements of transfer matrix. If we consider the case with no discharge mass flow fluctuations, the



Figure 2: Calculated transfer matrices of the cavitating propeller for an advance ratio, J1 = 1.0, and (K∗/2π, M∗)=(0.1, 1.0)
and for various values of A∗/Ap = 1 (◦), 2 (�), and 10 (�), where open and closed symbols denote the real and imaginary
parts of the matrix elements respectively.

propeller operated in a wider duct (for example A∗/Ap = 10) might be the most stable because of the large
negative impedance with the small imaginary part of T22 and the large imaginary part of T21.

Figure 3 presents the transfer matrix for an advance ratio of J1 = 1.0, a duct cross-sectional area of
A∗/Ap = 2 and various cavitation numbers. The values of (K∗/2π, M∗) are again set to be (0.1, 1.0) for
all cases. Head deterioration due to the presence of cavitation is implicitly included through the assumed
changes in the deviation angle β. All elements are affected by the head deterioration, but the stability
does not seem to be significantly changed. The imaginary parts of both T21 and T22 are increased by the
head deterioration.

Figure 3: Calculated transfer matrices of the cavitating propeller for an advance ratio, J1 = 1.0 and A∗/Ap = 2 for the
various cavitation numbers σ = ∞ (◦), 0.05 (�), and 0.01 (�), where open and closed symbols denote the real and imaginary
parts of the matrix elements respectively.

To proceed we must develop values for the cavitation compliance and mass flow gain factor of a cavitating
propeller. Otsuka et al. (1996) and Watanabe et al. (1998) have obtained the cavitation compliance and
mass flow gain factor of cavitating cascades by a free streamline theory. Here, we utilize their results in
order to estimate appropriate values of K∗/2π and M∗. The values of (K∗/2π, M∗) obtained by those



investigations are shown in Figure 4 for typical values for the solidity (1.0), the stagger angle (β = 25◦)
and the number of blades (ZR = 5). Because Otsuka et al. (1996) and Watanabe et al. (1998) examine
only two-dimensional flows around foils, the cavity size per blade is treated as a cross sectional area Vcpb

(not a volume) and the scaling as Vc = ZRRVcpb/2 is used as a best estimate. Note that (K∗/2π, M∗) are
functions of the parameter λ = σ∗/2α, where σ∗ is the cavitation number at inlet to the propeller.

Figure 4: Steady cavity length and the quasi-static cavitation compliance and mass flow gain factor plotted against σ∗/2α
obtained by a free streamline theory (Watanabe et al. 1998) for solidity = 1.0, stagger angle β = 25◦ and ZR = 5.

Now, rather than use the fixed values of K∗ and M∗, we calculate the transfer function using the above
relations between (K∗/2π, M∗) and λ = σ∗/2α. Results are shown in Figures 5 and 6 for A∗/Ap = 2
and 10, respectively. Three cases with different upstream cavitation numbers σ = 0.15, 0.20 and 0.5 are
examined. The advance ratio J1 is 1.0, which is larger than the critical value. Note that, only for the case
with σ = 0.15, is the parameter λ = σ/2α less than unity and therefore only in this case is there head
deterioration with increasing deviation angle. The cavitation compliance K∗/2π varies from 0.018 to 0.172
for A∗/Ap = 2 and from 0.009 to 0.143 for A∗/Ap = 10. The mass flow gain factor M∗ varies from 0.231
to 0.831 for A∗/Ap = 2 and from 0.140 to 0.777 for A∗/Ap = 10. These values are slightly smaller for the
case with A∗/Ap = 10. This is because, as shown in Figure ??, the flow coefficient is slightly larger for the
case with A∗/Ap = 10, and this results in a smaller incidence angle.

From Figures 5 and 6, it is seen that T21 takes similar values for all the cavitation numbers, while the other
elements of the transfer matrix are much affected by the presence of cavitation. Note that the elements
T11−1, T12 and T22−1 are much smaller for the case with A∗/Ap = 10, whereas the element T21 is the same
order for both cases. This implies that the propeller with A∗/Ap = 10 is more stable since the imaginary
part of T22 is smaller; in other words the effective mass flow gain factor is smaller.

The advance ratio J1 is also an important parameter, because there is a critical value which separates
normal operation from pump-like operation. It would be interesting to compare the transfer matrices for
normal and pump-like operations, but unfortunately the free streamline theory is only applicable for high
flow rates and high advance ratios.

We now consider the dynamics of the whole system of the water tunnel, taking the experimental arrange-
ment used by Duttweiler and Brennen (2002) as an example. Figure 7 shows the schematic of the facility
and cavitation dynamics used by Duttweiler and Brennen. The facility dynamics are characterized by (i)
the compliance, Cot = 405, of the overflow tank that allows control of the pressure within the facility and
therefore has the only deliberate free surface, (ii) the resistance, Rc = 0.0295, and inertance, Lc = 57.3, of



Figure 5: Calculated transfer matrices of the cavitating propeller with A∗/Ap = 2 and an advance ratio, J1 = 1.0, for the
various cavitation numbers σ = 0.15 (◦), 0.20 (�), and 0.50 (�) where open and closed symbols denote real and imaginary
parts of matrix elements respectively. The values of cavitation compliance and mass flow gain factor are obtained from Figure
4.

Figure 6: Calculated transfer matrices of the cavitating propeller with A∗/Ap = 10 and an advance ratio, J1 = 1.0, for the
various cavitation numbers σ = 0.15 (◦), 0.20 (�), and 0.50 (�) where open and closed symbols denote real and imaginary
parts of matrix elements respectively. The values of cavitation compliance and mass flow gain factor are obtained from Figure
4.

the pipe connecting the tunnel with the overflow tank, (iii) the compliance, Ct = 1970, associated with the
expansion and contraction of the walls of the tunnel, and (iv) the resistances, Rtu = 0.0 and Rtd = 0.0, and
inertances, Ltu = 0.953 and Ltd = 2.10, associated with the typical flow paths upstream and downstream
of the cavitating propeller. The parameters used by Duttweiler and Brennen (2002) were normalized using
the propeller radius, R, and the propeller rotation frequency, Ω, to obtain the values shown in the square
brackets after each symbol.

The dynamics of the system can be characterized by considering the response of the system to a fluctuating
mass flow rate, m̃e, injected at some specific location, e, in the system (Figure 7). We define a system
impedance, Z, as Z = p̃T

e /m̃e where p̃T
e is the total pressure fluctuation at e. Note that, in general, the

impedance Z is complex.

Using the present methodology coupled with the dynamics of the water tunnel identified by Duttweiler and
Brennen (2002), we have calculated the system impedance Z for the case with advance ratio J1 = 0.64 and



Figure 7: Schematic of facility and cavitation dynamics.

Figure 8: An example of the system impedance, Z. The mass flow fluctuation is imposed at the point e in Figure 7. The
real part of the system impedance is plotted against the various excitation frequencies For J1 = 0.64, σ = 0.25 and with K∗

and M∗ evaluated from Figure 4.

cavitation number σ = 0.25. The real part of Z is plotted in Figure 8 against the normalized frequency,
ω/Ω. In calculating the transfer matrix of propeller, we set A∗/Ap = 3.16 and ZR = 6 and the cavitation
characteristics (M, K) shown in Figure 4 were used. The positive peak at ω/Ω = 0.007 is largely due to the
impedance of overflow tank. The shallow negative peak around ω/Ω = 3 might indicate the existence of
surge instability, but the frequency is much higher than the value of ω/Ω = 0.2 observed in the experiments
of Duttweiler and Brennen (2002). Moreover, if we compare the present result with the system impedance
obtained by Duttweiler and Brennen, we find that the frequency obtained by the present analysis is still



much higher than the experimental values and the peak is much shallower. The explanation for this
discrepancy is unknown, but the following may be pertinent. In the pump cases, the elements T21 and
T22 − 1 are purely imaginary when the cavitation compliance and mass flow gain factor considered are
purely real. On the other hand, in the propeller cases, T21 and T22 − 1 are complex because of our one-
dimensional flow tube model. Complex values of T21 and T22 − 1 mean that the system responds as if the
cavitation compliance and mass flow gain factor were complex.

Figure 9: The real part of the system impedance for various upstream cavitation numbers, σ as indicated, for J1 = 0.64 and
for K∗ and M∗ evaluated from Figure 4.

Figure 9 shows the real part of system impedance for the case with three different cavitation numbers,
σ = 0.25, 0.2 and 0.15. The frequency at the negative peak decreases as the cavitation number is decreased,
but is still larger than the experimental value of ω/Ω = 0.2. One possible explanation for the discrepancy is
that the model considers only the sheet cavitation on the blade surface. However, a large volume change in
the tip cavity during a surge cycle was clearly observed in experiments by Duttweiler and Brennen (2002).
It is important to note that the present one-dimensional stream tube model may lose validity at the lower
advance ratios, at which the flow around the propeller is very three-dimensional. However, because the
surge instability is a system instability in which a large amount of fluid is accelerated one-dimensionally
by the volume change of the cavitation, the present method is expected to be applicable even at those low
advance ratios provided we could evaluate the cavitation compliance and the mass flow gain factor for all
the cavitation including the tip vortex cavities. The unsteady characteristics of tip vortex cavities need
further investigation.

Figure 10 shows the values of σ∗/2α just upstream of the propeller plotted in a graph of σ against J1

obtained by the present steady analysis. According to the linear theory [11], cavitation instabilities of a
2-D cascade are dependent only on the parameter σ/2α. The instability boundary obtained by Duttweiler
and Brennen (2002) is also plotted in the figure. We can see that the value of σ∗/2α is nearly constant along
the instability boundary, which means that the stability depends on the local condition at the propeller
inlet rather than the advance ratio or upstream cavitation number.

Thus we have evaluated the quasi-static transfer matrices for a cavitating propeller operating in a water
tunnel. Simple flow models based on a one-dimensional flow tube analysis are used. The effects of



Figure 10: The ratio of cavitation number to incidence angle (divided by 2), σ∗/2α, plotted against the advance ratio J1

for various upstream cavitation numbers, σ. The solid line is the boundary of the onset of surge instability observed by
Duttweiler and Brennen (2002). Surge instability occurs in the region below this line.

the presence of cavitation, and of the blockage due to the tunnel walls are examined. The former is
modeled by the head deterioration through the deviation of the exit flow, and the conventional cavitation
characteristics, the cavitation compliance and the mass flow gain factor. These characteristics are estimated
by a free streamline theory. It is found that the presence of the tunnel wall has a large effect on the stability
of propeller operation. In an open condition, the flow rate through the propeller is not very sensitive to
the advance ratio. However, in the presence of the tunnel walls, the propeller flow rate changes much
more in response to the advance ratio change. This implies that, if there are flow rate fluctuations, the
flow rate through the propeller varies more when there are tunnel walls and this may result in unstable
operation of the propeller. When the advance ratio is the same, the flow rate through the propeller is
smaller and the incidence angle is larger if the propeller is operated in a tunnel with a smaller cross-
sectional area. Large incidence angles can result in the flow instabilities and enhance the occurrence of
cavitation. Transfer matrices for the cavitating propeller are evaluated by assuming the flow is quasi-static.
The transfer matrices show that the propeller operating in the narrower tunnel is much more unstable. If
the propeller is operated in a wider tunnel or in an open condition, the effects of a mass flow gain factor
are reduced because the variation of the propeller flow rate is smaller even when the total flow rate changes
substantially.


