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Reversible Fluid Coupling Analysis

In this section we present a simple one-dimensional analysis of the flow in a reversible fluid coupling. This
one-dimensional analysis may be used as a first order estimate of the coupling performance. Alternatively
it can be applied to a series of stream tubes into which the coupling flow is divided. Such a multiple stream
tube (or two-dimensional flow) analysis allows accommodation of the large variations in flow velocity and
inclination that occur between the core and the shell of the machine.

Figure 1: Sketch showing the subdivision of the flow into stream tubes.

In the multiple stream tube analysis the flow is subdivided into stream tubes as shown in Figure 1; all
the data presented here used ten stream tubes of roughly similar cross-sectional area. The flow in each
stream tube is characterized by meridional and tangential components of fluid velocity, ui and vi, at each
of the transition stations, i = 1, 2, 3, between the turbine and the pump (i = 1), between the pump and
the turning vanes (i = 2) and between the turning vanes and the turbine (i = 3). Note that the meridional
component, ui = Q/Ai, where Q is the volume flow rate of fluid and Ai is the cross-sectional area of
flow at the location i = 1, 2, 3. A typical velocity triangle, in this case for the transition station i = 1,
is included in Figure 2; the velocity triangles for the other transition stations are similar. Later we will
present measured performance data for the reversible coupling whose basic geometry is listed in Table 1.

In the multiple stream tube analysis, the mean radius of the jth stream tube (divided by R) (the numbering
of the stream tubes is shown in Figure 1) at each of the locations i = 1, 2, 3 is defined by r̄j,i. Since the
distribution of velocity will change from one station to the other, only one of these three sets of stream
tube radii can be selected a priori. We chose to select the series r̄j,1 at the turbine/pump transition. It
follows that r̄j,2 and r̄j,3, the stream tube radii at the pump discharge and at the turning vane discharge
must then be calculated as a part of the solution. Discussion of how this is accomplished is postponed
until the solution methodology is described.



Figure 2: Velocity triangle at the turbine/pump transition station, i = 1. Flow is from the right to left, the direction of
rotation is upward and the angles are shown as they are when they are positive.

Table 1: Basic geometric data for the particular reversible coupling analyzed here. Angles are relative to the axial plane.
Outer shell radius, R, is 0.5m.

Pump discharge vane angle, βp, at shell 0◦

Pump discharge vane angle, βp, at core 0◦

Turbine discharge vane angle, βt, at shell 31.5◦

Turbine discharge vane angle, βt, at core 44◦

Turning vane discharge angle, βv −55◦

Pump inlet vane angle, δp, at shell −17◦

Pump inlet vane angle, δp, at core −10◦

Turbine inlet vane angle, δt, at shell 0◦

Turbine inlet vane angle, δt, at core 0◦

Turning vane inlet angle, δv 55◦

Outer core radius/Outer shell radius, rb 0.861
Inner core radius/Outer shell radius, rc 0.592
Inner shell radius/Outer shell radius, rd 0.29

The process of power transmission through the coupling (operating under steady state conditions) will now
be delineated. In the process, several loss mechanisms will be identified and quantified so that a realistic
model for the actual interactions between the mechanical and fluid-mechanical aspects of coupling can be
achieved.

Pump

The power input to the pump shaft is clearly ΩpTp where Ωp is the angular velocity of the pump (rad/s) and
Tp is the shaft torque for the pump. Some of the power is consumed by windage losses in the fluid annulus
between the pump shell and the stationery housing. This is denoted by a pump windage torque, Tpw, which
will be proportional to Ω2

p. Included in this loss will be the shaft seal loss as it has the same functional
dependence on pump speed. It is convenient to denote this combined windage and seal torque, Tpw, by a
dimensionless coefficient, Cpw, where Tpw = CpwρR5Ω2

p and ρ denotes the fluid density. Appropriate vales
of Cpw can be obtained, for example, from Balje (1981) who suggests values of the order of 0.005.

Furthermore the labyrinth seal in the core between the pump and turbine rotors causes direct transmission
of torque from the pump shaft to the turbine shaft. This torque which is proportional to (Ωp − Ωt)

2 will



be denoted by Ts and is represented by a seal windage torque coefficient, Csw, defined as

Ts = CswρR3(r2
b − r2

c )(Ωp − Ωt)
2 (Mec1)

A comparison with the experimental data (see below) suggests a value of Csw of about 0.014. Regarding
this labyrinth seal, we should also observe that the leakage through this seal has been neglected in the
present analysis.

It follows that the power available for transmission to the main flow through the pump is Ωp(Tp−Tpw−Ts)
and this manifests itself as an increase in the total pressure of the flow as it passes through the pump.
For simplicity, the present discussion will employ a two-dimensional representation of the fluid flow in
which the flow is characterized at any point in the circuit by a single meridional velocity, ui, and a single
tangential velocity, vi, at the appropriate rms radius. In practice, these quantities will vary over the cross
section of the flow and this variation is considered later. At this stage it is not necessary to introduce this
complexity. The power balance between the mechanical input, the losses and the ideal fluid power applied
to the pump, then yields

Ωp(Tp − Tw − Ts) = QHpi (Mec2)

where, from the application of angular momentum considerations in the steady flow between pump inlet
(i = 1) and pump outlet (i = 2), the ideal pump head rise, Hpi, is given by

Hpi = ρΩp(r2v2 − r1v1) (Mec3)

where r1, r2 are the radial locations (in m) of the inlet and outlet and v1, v2 are the tangential components
of velocity at those locations. More specifically, Hpi is ideal pump total pressure rise in the absence of
fluid viscosity when the pump would be 100% efficient. However, in a real, viscous flow, the actual total
pressure rise produced, Hp, is less than Hpi; the deficit is denoted by Hpl where

Hp = Hpi − Hpl (Mec4)

This total pressure loss, Hpl, is difficult to evaluate accurately and is a function, among other things, of
the angle of attack on the leading edges of the vanes. Note that the angle of attack (relative to the axial
plane), αp, on the pump blades is given by

αp = tan−1

{
v1 − r1Ωp

u1

}
− δp (Mec5)

In the present context the total pressure loss, Hpl, is ascribed to two coefficients, Cpa, and Cpb. The first
coefficient, Cpa, describes a loss which is a fraction of the dynamic pressure based on the component of
relative velocity parallel to the blades at the pump inlet. The second coefficient, Cpb, describes a loss
that is a fraction of the dynamic pressure based on the component of the pump inlet relative velocity
perpendicular to the blades. Thus

Hpl =
ρ

2

[
u2

1 + (v1 − r1Ωp)
2
] [

Cpa + (Cpb − Cpa)sin
2αp

]
(Mec6)

The coefficients Cpa and Cpb can be estimated using previous experience in pumps. Though there are many
possible representations of the pump total pressure loss, the above form has several advantages. First, at a
given flow rate, the loss is appropriately a minimum when αp is zero, a condition which would correspond
to the design point in a conventional pump. And this minimum loss is a function only of Cpa. On the
other hand at shut-off (zero flow rate) the loss is a function only of Cpb. These relations permit fairly ready
evaluation of Cpa and Cpb in conventional pumps given the head rise and efficiency as a function of flow



rate. Typical values of Cpa and Cpb are of the order of unity; but the value of Cpa must be less than the
value of Cpb, the difference representing the effect of the inlet vane angle on the losses in the pump.

The hydraulic efficiency of the pump, ηp, is 1 − Hpl/Hpi. In a conventional centrifugal pump for which
v1 = 0, the maximum design point efficiency, ηp, is expected to be about 0.85. With the kind of uneven
inlet flow to be expected in the present flow a lower value of the order of 0.80 is more realistic. This value
provides one relation for Cpa and Cpb.

Turbine

We now jump to the turbine output shaft and work back from there. The power delivered to the turbine
shaft is ΩtTt where Ωt is the angular velocity of the turbine (rad/s) and Tt is the shaft torque for the
turbine. As in the pump there are windage losses, ΩtTtw, where the windage torque, Ttw, is described by a
dimensionless coefficient, Ctw = Ttw/ρΩ2

t . Then the power delivered to the turbine rotor, Ωt(Tt +Ttw−Ts),
by the main flow through the turbine is related to the ideal total pressure drop through the turbine, Hti,
by

Ωt(Tt + Ttw − Ts) = QHti (Mec7)

where, again, from angular momentum considerations

Hti = Ωt(r2v3 − r1v1) (Mec8)

With an inviscid fluid, Hti would be the actual total pressure drop across the turbine. But in a real turbine
the actual total pressure drop is greater by an amount, Htl, which represents the total pressure loss in the
turbine, and hence

Ht = Hti + Htl (Mec9)

In a manner analogous to that in the pump, the total pressure loss in the turbine, Htl, is ascribed to
two coefficients Cta and Ctb. The first coefficient, Cta, describes a loss which is a fraction of the dynamic
pressure based on the component of relative velocity parallel to the blades at the turbine inlet. This
coefficient essentially determines the minimum loss at the design point where the angle of attack, αt, is
zero. The second coefficient, Ctb, describes a loss which is a fraction of the dynamic pressure based on the
component of the turbine inlet velocity perpendicular to the blades. Thus

Htl =
ρ

2

[
u2

3 + (v3 − r3Ωt)
2
] [

Cta + (Ctb − Cta)sin
2αt

]
(Mec10)

where the the angle of attack (relative to the axial plane), αt, on the turbine blades is given by

αt = tan−1

{
v3 − r2Ωt

u3

}
− δt (Mec11)

As in the case of the pump, appropriate values of Cta and Ctb are of the order of unity and should be such
as to yield a stand-alone turbine efficiency, Hti/Ht of the order of 0.85. However, Ctb must be greater than
Cta to reflect the appropriate effect of the inlet vane angles on the hydraulic losses.



Figure 3: Cross-section of a turning vane.

Turning Vanes

The geometry of a turning vane used in the coupling discussed here is shown in Figure 3.

The total pressure rise produced by the pump, Hp, is equal to the total pressure drop across the turbine,
Ht, plus the total pressure drop across the turning vanes, Hv, so that

Hp = Ht + Hv with the turning vanes inserted (Mec12)

Hv = 0 with the turning vanes retracted (Mec13)

It is this balance which essentially determines the flow rate, Q, and the meridional velocities, ui. The total
pressure drop across the vanes, Hv, is described a loss coefficient defined by

Cv = 2Hv/ρ(v2
3 + u2

3) (Mec14)

Though both Hv and Cv will vary with the angle of attack of the flow on the turning vanes, αv, we have
not exercised that option here since there is no independent information on the turning vane performance.
Estimates from experience suggest that Cv should lie somewhere between about 0.3 and 1.0.

Turbine Partial Admission Effect

Due to the large blockage effects of the turning vanes, the flow discharging from the vanes consists of an
array of jets interspersed with relatively stagnant vane wakes. This means that during reverse operation the
turbine experiences inlet conditions similar to those in a partial admission turbine. In the hydraulic analysis
we can approximately account for these partial admission effects by taking note of the following property of
partial admission. Consider and compare the flux of angular momentum in the flow into the turbine, first,
for full admission and, second, for partial admission. Under uniform, full admission conditions, u3 and
v3 are independent of circumferential position and the flux of angular momentum entering the turbine is
proportional to u3v3. If the swirl angle were defined by the turning vane discharge angle then this reduces
to u2

3 tan βv. On the other hand a partial admission flow consisting of jets with velocity components u∗
3, v∗

3



alternating with stagnant wakes of zero velocity would have a flux of angular momentum equal to ku∗
3v

∗
3

where k is the fraction of the cross-sectional area occupied by the jets (0 < k < 1). But if the total flow
rate is the same in both cases then u∗

3 = u3/k and if the jets are parallel with the turning vane discharge
angle then v∗

3 = u∗
3 tanβv. Hence the flux of angular momentum becomes u2

3 tanβv/k. In other words the
blockage which creates the jets and wakes also leads to an increase in the flux of angular momentum by
the factor, 1/k.

To account for this in the flow analysis, the appropriate angular momentum flux (which is essential to the
basic principles of the pump or turbine) can be maintained by inputting an effective turning vane discharge
angle denoted by β∗

v . Comparing the above expressions the effective turning vane discharge angle is given
by

tanβ∗
v = tan βv/k (Mec15)

Hence by inputting a somewhat larger than actual turning vane discharge angle we can account for these
partial admission effects.

The problem therefore reduces to estimating an appropriate value for k from the experimental measure-
ments. For this purpose, we develop the relation between k and the loss coefficient for the turning vanes,
Cv. If the total head of the jets is assumed to be equal to the upstream total head (at location i = 2), then
it is readily shown that the mean total head of the discharge (including the wakes) implies the following
relation between k and Cv:

k =

{
1 − Cvtan2βv

1 + Cv

} 1
2

(Mec16)

The value of Cv = 0.36 which is deployed later along with the appropriate βv = −55◦ yield β∗
v = −72.8◦

and a blockage ratio (or partial emission factor) of k = 0.44 which seems reasonable given the geometry of
the turning vane cascade.

Solution for an individual stream tube:

Consider first the solution of the flow in an individual stream tube where it is assumed that the velocity
at any location in the circular path (Figure 1) can be characterized by a single meridional and a single
tangential velocity. Assume for the moment that the radial positions of the stream tube are known; then
the inlet and discharge angles encountered by that particular stream tube at those radial positions at each
of the transition stations can be determined. Then, for a given slip, S = 1 − Ωt/Ωp, the first step is to
solve the flow equation (Mec12) or more specifically:

Hpi − Hpl = Hti + Htl + Hv (Mec17)

to obtain the flow rate and velocities. The procedure used starts with a trial value of u1. Values of u2, u3

follow from continuity knowing the areas Ai:

ui = u1A1/Ai , i = 2, 3 (Mec18)

Furthermore, it is assumed that the relative velocity of the flow discharging from the pump, the turning
vanes or the turbine is parallel with the blades of the respective device (or the effective angle in the case
of the turning vanes). Given the high solidity of the pump and turbine, this is an accurate assumption.
This allows evaluation of the tangential velocities:

v1 = r1Ωt + u1 tanβt (Mec19)



v2 = r2Ωp + u2 tanβp (Mec20)

where r1 and r2 are rms channel radii at each location and v3 = v2 for the turning vanes retracted and
v3 = u3 tanβv for the turning vanes inserted. These relations can then be substituted into the definitions
(Mec3), (Mec8), (Mec6), (Mec10) and (Mec14) to allow evaluation of all the terms in equation (Mec17).
That equation is not necessarily satisfied by the initial trial value for u1. Hence an iteration loop is
executed to find that value of u1 which does satisfy equation (Mec17). The velocities and flow rate are
thus determined for a given value of the slip.

Multiple stream tube Solution:

As described in the last section, the multiple stream tube analysis begins with a set of guessed values for
the stream tube locations at the transition stations, i = 2 and i = 3. It also begins with an assumed value
for the flow rate in each stream tube (more specifically an assumed value of u1 = 1.) Then the method of
the last section is used to solve for the flow and allows evaluation of the total pressure changes and losses
in each stream tube. Then, the degree to which equation (Mec17) is satisfied is assessed. This leads to an
improved value of u1 and the process is repeated to convergence (only three or four cycles are necessary).
By doing this for each stream tube we obtain the total pressure and the static pressure differences between
all three locations for each stream tube.

The principle by which the stream tube geometry is adjusted is that the flows in each of the three locations
should be in radial equilibrium. This implies that, at each of the locations i = 1, 2, 3, the flow must satisfy(

∂P

∂r

)
i

=
ρv2

i

ri
(Mec21)

where P is the static pressure. Application of this condition at the turbine/pump transition station (i = 1)
establishes the static pressure difference between each stream tube. Then using the information from the
flow solution on the static pressure differences between transition stations we can establish the pressure
distribution between the stream tubes at transition stations i = 2 and i = 3. Then using equation (Mec21)
we examine whether the flows in these locations are in radial equilibrium. Given the initial trial values
of r̄j,2 and r̄j,3, this will not, in general, be true. The method adjusts the values of r̄j,2 and r̄j,3 and then
repeats the entire process until radial equilibrium is indeed achieved at transition stations i = 2 and i = 3.
This requires as many as 30 iterations.

Power Transmission Summary:

This completes the description of the power transmission through the coupling which is summarized in
Table 2. The overall efficiency of the coupling, η, is given by

η =
ΩtTt

ΩpTp

=
QHti − ΩtTtw + ΩpTs

QHpi + ΩpTpw + ΩpTs

(Mec22)

or substituting from equations (Mec4) and (Mec9):

η =
Ωt(r2v3 − r1v1) − (ΩtTtw + ΩtTs)/Q

Ωp(r2v2 − r1v1) + (ΩpTpw + ΩpTs)/Q
(Mec23)



Table 2: Power transmission and losses.

Pump shaft power = ΩpTp

Power lost in pump windage = ΩpTpw

Power to turbine through seal = ΩpTs

Power to main pump flow = QHpi

= Ωp(Tp − Tpw − Ts)
Power in main flow out of pump = Q(Hpi − Hpl)
Power lost in turning vanes = QHv

Power in flow entering turbine = Q(Hpi − Hpl − Hv)
= Q(Hti + Htl)

Power to turbine rotor by flow = QHti

= Ωt(Tt + Ttw − Ts)
Power to turbine through seal = ΩtTs

Power lost in turbine windage = ΩtTtw

Turbine shaft power = ΩtTt

Figure 4: Efficiency and torque coefficients for the reversible coupling using Cpa = Cta = 0.7, Cpb = Ctb = 1.0, Cv = 0.36,
Csw = 0.02, Cw = 0.005 and an effective turning vane discharge angle of −72.8◦.



Figure 5: Velocity of turning vane discharge jets for the same conditions as listed in Figure 4.

This expression demonstrates an important feature of the reversible coupling. In the forward mode with
the vanes removed, v2 = v3, and the quantities in parentheses in the numerator and denominator are
identical. Therefore, if the windage torques, Ttw and Tpw, are small (as is normally the case) and if Q is
not close to zero (as can only happen close to S = 0) then the coupling efficiency is close to Ωt/Ωp = 1−S
(S is the slip). Thus, in the forward mode, only the windage losses cause the efficiency to deviate from
1 − S. On the other hand no such simple relation exists in the reverse mode.

Apart from the overall efficiency, η, two other coupling characteristics will be presented, namely the pump
torque coefficient, Tp, and the turbine torque coefficient, Tt. The pump torque coefficient is defined as
Tp = Tp/ρR

5Ω2
p and the turbine torque coefficient by Tt = Tt/ρR

5Ω2
p. Note the choice of Ωp in the

denominator for Tt.

Comparison with experimental data:

The efficiency, torque coefficients and fluid velocities measured during tests of the coupling conducted by
NAVSSES (using an oil of density 849 kg/m3) at a input (or pump) speed of 1000rpm will be compared to
the results of the present analytical model. Note that although three graphs for η, Tp and Tt are presented,
these only represent two independent sets of data since η = Tt(1 − S)/Tp.

A typical set of results for the performance of the coupling are presented in Figures 4 and 5. The coefficients
Cpa, Cpb, Cta, Ctb, and Cva (and, to a lesser extent, Cw and Csw) were chosen to match the experimental
data by proceeding as follows. First note that Cw and Csw have little effect except close to S = 0. In fact,
the peak in η near S = 0 is almost entirely determined by Cw and values of Cw = 0.02 were found to fit the
data near S = 0 quite well. This value is also consistent with previous experience on windage coefficients
(Balje 1981). Similarly past experience would suggest a value of 0.005 for the seal windage coefficient, Csw.

Turning to the pump, turbine and turning vane loss coefficients, it is clear that the turning vanes have
no effect on forward performance (S < 1). Hence the pump and turbine loss coefficients were chosen to
match this data. In this regard the efficiency is of little value since the forward efficiency is always close
to (1−S). Values of Cpa = Cta = 0.7 and Cpb = Ctb = 1.0 seemed to match the forward torque coefficients
well. These could be supported by the argument that all the dynamic head normal to the vanes at inlet
will likely be lost (thus Cpb = Ctb = 1.0) and a high fraction of that parallel with the vanes is also likely



Figure 6: Meridional velocity distributions at the transition stations for four different slip values.

to be lost (thus Cpa = Cta = 0.7). Note that the results presented are not very sensitive to the precise
values used for these loss coefficients. It should also be noted that these loss coefficients yield sensible peak
efficiencies for the pump or turbine when these are evaluated for stand-alone performance (respectively
79% and 86%).

Finally, then, we turn to the reverse performance (S > 1) with only one loss coefficient left to determine,
namely the loss due to the turning vanes, Cva. In the example shown a value of Cva of 0.36 yields values
of the efficiency that are consistent with the experimental results.

Note that if the coefficients described above were used with the actual turning vane discharge angle, there
would be substantial discrepancies between the observed and calculated results; this helps to validate the
present analysis and the use of the effective turning vane discharge angle, β∗

v = −72.8◦.

The multiple stream tube approach also provides information on the distributions of flow, angles of at-
tack, etc. within the coupling and demonstrates how these change with slip. Examination of the results
revealed several ubiqitous non-uniformities and one example, presented in Figure 6, will suffice to illus-
trate these. At low slip values in forward operation the meridional velocity profiles are very non-uniform.
This non-uniformity consists of much higher meridional velocities near the axis in the turbine-to-pump
transition and at the outer radius in all the transitions. As the slip increases in forward operation this
non-uniformity decreases; near S = 1 it has disappeared at the pump-to-turbine transition but remains at
the turbine-to-pump transition. When the turning vanes are inserted, the velocity profiles show a highly
non-uniform character in the pump-to-turning-vane transition but this is almost completely evened out
by the turning vanes. The turbine-to-pump non-uniformity near S = 1 is not too dissimilar to that in
forward operation near S = 1. However, it is interesting to note that this non-uniformity is reversed as
S = 2 is approached. These changing non-uniformities are important because they imply corresponding
changes in the distribution of the angles of attack on the pump, turning vanes, and turbine. Consequently,
the optimal vane inclination distributions (which would have as their objective uniform angles of attack)
are different for forward and reverse operation.

In conclusion, we have presented a hydraulic analysis of a reversible fluid coupling operating over a range of
slip values in both forward (0 < S < 1) and reverse (1 < S < 2) operation. The analysis employs estimated
loss coefficients for the pump, turbine, turning vanes, windage and core seal. It splits the flow into an
array of stream tubes with pressure balancing adjustment across those stream tubes and solves to find the
fluid velocities, flow rates and static pressures at each of the transition stations for each stream tube. This
information then allows evaluation of the overall performance characteristics including the efficiency and
the pump and turbine torque coefficients. Comparison with data from the full scale testing (conducted by



the US Navy) of a reversible fluid coupling made by Franco-Tosi demonstrates good agreement between the
analysis and the experiments. While the analysis involves the selection and identification of a number of
hydraulic loss coefficients, the values of the coefficients do appear to be valid over a wide range of operating
points, slip values and speeds. Moreover, though these coefficients are necessarily specific to the particular
coupling studied, they nevertheless provide benchmark guidance for this general class of machine.

When the coupling is operated in the forward mode, the flow rates are small and hence the hydraulic losses
are quite minor. Thus the efficiency is close to the ideal. However, as the slip increases, the flow rates
become larger and the hydraulic losses (which increase like the square of the flowrate) become substantial.
Under these conditions the device behaves much more like an interconnected pump and turbine than a
conventional fluid coupling and the overall efficiency is similar to that one would expect from a device which
links drive trains through a combination of a pump and a turbine. Even under the best of circumstances
the analysis suggests that the efficiency of this generic type of coupling could not be expected to exceed
60% in the reverse mode.

The analysis presented here also demonstrates that, since it is used over a wide range of slip values, a
reversible fluid coupling must operate over a wide range of angles of attack of the flows entering the pump
and turbine rotors. With fixed geometry rotors, this inevitably results in substantial hydraulic losses,
particularly in the reverse mode. Choosing the inlet blade angles in order to minimize those losses is not
simple and it is not clear how the fixed geometry should be chosen in order to achieve that end.


