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General Relation between Lift and Circulation

Having, in the previous section (Dcb), derived the relation between the circulation, Γ, on a circular cylinder
spinning in a uniform stream and the lift, L, experienced by the cylinder we shall now proceed to prove
that the same result holds for any two-dimensional object in a steady, planar, potential flow.

The concept of circulation is very important to our understanding of the lift on any object in a fluid flow.
This understanding begins with Kelvin’s theorem which was proven in an earlier section (section (Bdj))
and states that in the flow of an inviscid fluid under the action of conservative body forces, the circulation
around any closed contour within the fluid will not change with time. Now consider the inviscid flow (with
conservative body forces) of a uniform stream of velocity, U , around an object such as the airfoil depicted
in Figure 1. In this flow consider a general contour which at some much earlier moment was far upstream
of the object. Being entirely in the uniform stream any contour would therefore have zero circulation.
Now, consider it becomes wrapped around the object as shown in Figure 1. Since its circulation did not
change with time it must still have zero circulation. But now consider such a contour comprised of four

Figure 1: Closed contours around an airfoil.

parts, namely

1. The contour, C , that surrounds the object except for an infinitesmal interruption between the locations
A and D.

2. Two essentially colocated sections AB and CD on either side of a cut connecting the contours C and
CB.

3. The contour, CB, which surrounds the object except for an infinitesmal interruption between the
locations B and C.



It follows that we can decompose the full contour integral whose circulation is zero into four line parts
namely ∮
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But the integrals along AB and CD are not only colocated but also in opposite directions and so the sum
of those two integrals must be zero so that the relation (Dcb1) becomes
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Now the direction of evaluation of the remaining two integrals are opposite, the integral along C being in
the anticlockwise direction whereas the integral along CB is in the clockwise direction. It therefore follows
from equation (Dcb2) that ∮
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where both closed contour integrals are defined as positive in the anticlockwise direction as was established
as the convention in section (Bdj). It follows that the circulation evaluated around the contour on the
surface of the object or any other contour surrounding the object is the same; we denote both by Γ.

The importance of this result lies in the fact that the circulation, Γ, around any object such as an airfoil
can be evaluated using any contour we wish that surrounds the object. In section (Bdgj) we demonstrated
that application of the momentum theorem to such a flow configuration led to the relation that the lift on
the object, L, in the y direction is directly related to the circulation Γ by

L = −ρUΓ (Dcb4)

Of course, as yet, it is unclear what determines the circulation, Γ, and this too requires further discussion
including analyses of the effects of viscosity. We earlier developed a special case of this result, namely the
lift on a spinning cylinder in potential flow but the astute reader will have recognized that we did not
explain how the circulation was transmitted to the fluid by the spinning cylinder. We only observed that
if such circulation existed then the lift on the cylinder (known in that case as the Magnus Force) would
be given by L = −ρΓU . However, it is an effect well known in practice through the effects of spin on the
flight of golf balls, baseballs and soccer balls.

Finally we should take note of the fact that throughout this and the preceding sections like section (Bgdj)
the circulation has been defined as positive in the anticlockwise direction (as a result of the polar velocity,
uθ, being defined as positive in the anticlockwise direction) and this determines the negative sign in equation
(Dcb4). However, it should be noted that the opposite sign convention is often employed for the circulation
in discussion of airfoil fluid dynamics and this leads to L = ρUΓ; thus, in individual analyses, care needs
to be exercised to define the sign convention being used.


