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Manometer Oscillations

Uniform Area Manometer

As depicted in Figure 1, a manometer of uniform interior cross-sectional area, A, is filled with a length of
incompressible, inviscid liquid equal to �. The interior levels are then disturbed and released so that they
oscillate freely and we wish to calculate the frequency of those manometer oscillations. Consider the

Figure 1: Simple manometer with uniform cross-sectional area.

moment when the level on the left-hand side is elevated by a distance x. Then the elevation at the right-
hand side will be −x and the velocity and acceleration of the fluid (considered positive in the clockwise
direction) will be, respectively, dx/dt and d2x/dt2 throughout the length, �. It follows that the total
pressure, pT , on the liquid surface on the left will be pa +ρgx+ρ(dx/dt)2 and that on the liquid surface on
the right will be pa − ρgx + ρ(dx/dt)2 where pa is the atmospheric pressure acting on both liquid surfaces.
The difference in the total pressures (right minus left) is therefore −2ρgx. If we neglect viscous, frictional
effects, the unsteady Bernoulli equation states that this must be equal to the inertial term, ρ�(d2x/dt2)
and therefore:
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and this means that the motion of the levels is oscillatory with a natural frequency, ω (in radians/second)
of
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This frequency, which is essentially that of a simple pendulum, is commonly observed in everyday life. For
example a pipe with a length of � = 1m has a manometer frequency of about 4.4rad/sec or about 0.7Hz.
This allows it to be easily distinguished from other frequencies such as the acoustic frequencies of the pipe.

Manometer with different Areas

As a second example, consider a manometer with an interior cross-sectional area of A on one side and 2A
on the other side is filled with incompressible, inviscid liquid as depicted in Figure 2. At rest, the side with



Figure 2: A manometer with two different cross-sectional areas.

area A and the side with area 2A both have a length equal to �. The levels inside are then disturbed and
released so that they oscillate and we wish to calculate the frequency of those manometer oscillations.

Neglecting any viscous, frictional effects, consider the moment when the fluid on the left hand side is
elevated by a height x above the equilibrium position. Then, by conservation of mass, the elevation on
the right-hand side will be −x/2 and the velocity and acceleration of the fluid (considered positive in the
clockwise direction) will be, respectively, dx/dt and d2x/dt2 on the left and one half of that on the right.
It follows that the total pressure, pT , on the liquid surface on the left will be pa +ρgx+ρ(dx/dt)2 and that
on the liquid surface on the right will be pa − 0.5ρgx +0.25ρ(dx/dt)2 where pa is the atmospheric pressure
acting on both liquid surfaces. The difference in the total pressures (right minus left) is therefore
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When the amplitude of the oscillatory motion is small the second term is a second-order effect and, if this
is neglected along with any viscous, frictional effects, the unsteady Bernoulli equation states that the first
term must be balanced by the sum of the inertial terms of the two sections so that
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so that the frequency of this manometer becomes
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Partially immersed straight pipe

As depicted in Figure 3, a straight pipe, open at both ends, is inserted in a large tank of liquid so that
the submerged length is h. The level inside the pipe is displaced vertically and then released so that the
level oscillates up and down; we wish to calculate the frequency of the oscillations. Consider the moment
when the liquid surface in the tube is elevated by a height x above the equilibrium position. Then the
velocity and acceleration of the fluid in the tube (considered positive upward) will be, respectively, dx/dt
and d2x/dt2. It follows that the total pressure, pT , on the liquid surface in the tube is pa +ρgx+ρ(dx/dt)2



Figure 3: A straight pipe partially inserted in a large tank of liquid.

where pa is the atmospheric pressure acting on all liquid surfaces. We will assume that the tank is very large
so that both the elevation change in its surface and the velocity of its surface are negligible; consequently
the total pressure of the tank surface is just pa. Consequently the difference in the total pressures (tank
surface minus interior tube surface) is −ρgx−ρ(dx/dt)2 and, as in the preceding example, the second term
is a higher-order effect that will be neglected. Therefore the unsteady Bernoulli equation requires that the
first term will be balanced by the inertial term. The contribution to the inertial term from the flow inside
the tube will be ρh(d2x/dt2) and the acceleration in the tank is so small that the contribution from the
tank will be negligible. The net result of the unsteady Bernoulli equation is therefore
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so that the frequency of the oscillations in the tube is
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