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Stability of Planar Parallel Flows

In this section we examine some of the results obtained from the linear stability analyses described in
section (Bkc). It is convenient to begin with the data for boundary layers presented in Figures 1 to 4.
The equations governing the perturbations in section (Bkc) suggest that it is convenient and appropriate
to non-dimensionalize the coordinate x by using a surrogate parameter in the form of the displacement
thickness, δD, and to non-dimensionalize this in the form of δDU/ν which is a Reynolds number based
on the displacement thickness and the velocity, U , at the edge of the boundary layer. Thus δDU/ν will
represent the distance, x, in the data that follows. Moreover, a convenient non-dimensional frequency is
ωRν/U2.

Figure 1: Neutral stability boundary (kI = 0) for the Blasius boundary layer velocity profile in a graph of the perturbation
frequency, ωRν/U2, plotted against the surrogate distance parameter, δDU/ν .

As a first example of the results of a stability calculation, Figure 1 presents the neutral stability contour
(kI = 0) for the Blasius boundary layer velocity profile in a graph of the potential perturbation frequency,
ωRν/U2, plotted against the surrogate distance parameter, δDU/ν. The regions of stable behavior surround
a region of instability and the neutral stability line demonstrates that the boundary layer, which is stable
when δD is small, first becomes unstable when δDU/ν ≈ 600 as we can see by constructing a vertical

tangent to the neutral stability curve. Since we have seen in section (Bjd) that δD = 1.72(νx/U)
1
2 for the

Blasius boundary layer it follows that this will first become unstable when the distance x from the leading
edge increases to a value given by(
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= 1.22 × 105 (Bkd1)

where Rex denotes the Reynolds number based on U and x. It also follows that the first frequency which
becomes unstable is given by the point where the vertical tangent touches the neutral stability curve and
from Figure 1 that frequency is given by

ωR ≈ 1.6 × 10−4 U2

ν
(Bkd2)

Since it is that frequency which is first amplified, it is usually that frequency that is observed experimentally
during the first stages of transition. This assumes that the inherent noise available for amplification is at
least broadband if not white.



Figure 2: As Figure 1, comparing the calculated neutral stability boundary with experimental measurements. Adapted from
Schlichting (1960).

Figure 3: Spatial amplification for the Blasius boundary layer velocity profile in a graph of the perturbation frequency,
ωRν/U2, plotted against the surrogate distance parameter, δDU/ν , showing contours of several amplification rates, −kIν/U ,
as indicated. Adapted from Jaffe et al. (1970); see also Sherman (1990).

Figure 2 shows a comparison between the analytical neutral stability curve presented in Figure 1 and some
experimental observations of that neutral stability boundary. The agreement is good and any discrepancy
can probably be attributed to the difficulty of determining exactly where the instability begins.

To proceed beyond the neutral stability curve and calculate the growth of the noise downstream of the
onset of amplification as we discuss in the next section (Bke), knowledge of the amplification rates inside
the neutral stability curve are needed. For the Blasius boundary layer profile, some contours of non-
zero non-dimensional amplification rates, −kIν/U , are shown in Figure 3. How this data can be used is
discussed in the section that follows.



Figure 4: Spatial amplification data for the Falkner-Skan boundary layer velocity profiles. Left: values of the critical Reynolds
numbers, UδD/ν (left scale), and the corresponding disturbance velocity, ωR/UkR (right scale), plotted against 2m/(m + 1).
Right: values of the maximum frequency of unstable perturbations, ωRν/U2, and the maximum spatial amplification rates,
−kIν/U , as functions of 2m/(m + 1). Adapted from Sherman (1990).

Turning to other velocity profiles for boundary layers, Figure 4 presents some data for various Falkner-
Skan profiles characterized by the parameter m or, more specifically, by 2m/(m + 1) which is related to
the half-angle of the wedge on which such a profile would occur, βπ/2, by β = 2m/(m+1). The left graph
presents values of the critical Reynolds numbers, UδD/ν (left scale), and the corresponding disturbance
velocity, ωR/UkR (right scale). The right graph presents values of the maximum frequency of unstable
perturbations, ωRν/U2, and the maximum spatial amplification rates, −kIν/U . Note that the larger the
acceleration of the external velocity, U , the more stable the flow becomes with larger critical Reynolds
numbers, δDU/ν, and smaller maximum amplification rates, −kIν/U . Conversely, when the external flow
is decelerating (m becomes negative), the boundary layer becomes much less stable and the amplification
rates become much larger. We comment in the next section on how this Falkner-Skan data has been used
in efforts to predict the progress of transition to turbulence.

As another example, we turn to the stability of an interfacial boundary layer profile with zero shear stress
at y = 0. This anticipates the development of Tollmein-Schlichting waves on the gas/liquid free surface
in a liquid boundary layer flow that separates after developing on the surface of an object in a uniform
stream. These can be seen in Figures 5 and 6 which are photographs of the surface of cavities behind
an ogive and a sphere showing the waves appearing just after the free surface leaves the object surface
(Brennen 1970). The same kind of instability waves can be observed on the surface of a liquid jet provided
the boundary layer prior to separation is laminar; Figure 7 exhibits such waves (Hoyt and Taylor 1977).

A general stability eigenvalue diagram for the spatial or temporal stability of an interfacial free surface
boundary layer is shown in Figure 10; it is a graph of the imaginary wavespeed, cI/ΔU , plotted against
(U − cR)/ΔU (ω = kc) in which contours of real and imaginary wavenumbers, bkR and bkI have been
plotted. The fluid velocity far from the interface is U , ΔU is the velocity at the interface and b is the
half-width of the velocity profile.

Finally, we present in Figure 10, the stability graph for a planar Poiseuille flow between two plates a
distance 2h apart (Figure 9). The line for various amplification rates, −ωIU/kRh, are plotted in a graph
of the dimensionless perturbation wavenumber, kRh, against the Reynolds number, Uh/ν, where U is the



Figure 5: Flow of water past an ogival headform showing the growing Tollmein-Schlichting waves on the interfacial layer just
after separation (Brennen 1970).

Figure 6: Flow of water past a spherical headform showing the growing Tollmein-Schlichting waves on the interfacial layer
just after separation (Brennen 1970).

maximum or centerline velocity of the flow.

Figure 7: Water jet emerging from a laminar nozzle (Hoyt and Taylor 1977).



Figure 8: General amplification chart for the spatial or temporal stability of an interfacial boundary layer with a free surface
in a graph of the imaginary wavespeed, cI/ΔU , plotted against (U − cR)/ΔU . Contours of real and imaginery wavenumbers,
bkR and bkI are shown. Adapted from Brennen (1970).

Figure 9: Planar Poiseuille flow between two flat plates.



Figure 10: Spatial amplification for planar Poiseuille flow in a graph of the perturbation wavenumber, kRh, plotted against
the Reynolds number, Uh/ν . Contours of several amplification rates, −ωIU/kRh, are shown. Adapted from Shen (1954).


