
An Internet Book on Fluid Dynamics

Planar Supersonic Flows for Small Deflections

In this section we analyze supersonic flows that involve small deflections in the direction of the flow, flows
with small angles of turn. The context is displayed in Figure 1 where a flow with M > 1 is initially parallel
with a flat wall but is forced to turn through a small angle, dθ, because the wall makes that turn. The
small angle, dθ, can be positive or negative but will be defined as positive when the wall turns into the flow.
The flow upstream of the turn is described by the velocity components, u and v = 0, parallel and normal

Figure 1: Notation for a supersonic flow performing a small angle of turn, dθ.

to the upstream wall, and by the Mach number, M , pressure, p, density, ρ, and temperature, T . A Mach
wave is generated where the wall turns and is inclined at the angle, μ, to the upstream wall. The angle
of turn, dθ, is small and so the flow downstream of the Mach wave is still supersonic with Mach number,
M +dM , and is therefore parallel with the downstream wall and has a pressure, p+dp, density, ρ+dρ, and
temperature, T + dT . The velocity components of this downstream flow are denoted by u + du and dv and
the magnitude of this velocity is denoted by q + dq where q ≈ u. In order to apply the basic conservation
equations we choose to utilize the control volume shown by the red box in Figure 1 whose diagonal has
unit length and sides measuring sin μ and cos μ as shown in the Figure. For convenient reference the four
sides of this control volume are labeled 1, 2, 3 and 4 as indicated in the figure; it also has unit dimension
normal to the sketch.

The conservation equations applied to this control volume yield the following:

• Continuity:
ρu sin μ = [(u + du) sin μ − dv cos μ] (ρ + dρ) (Bok1)

and neglecting all terms quadratic in the small quantities this yields

u sinμ dρ + ρ sinμ du − ρ cos μ dv = 0 (Bok2)

• Momentum parallel to the upstream wall:

− sinμ dp = (ρ + dρ)
[
(u + du)2 sinμ − (u + du) cosμ dv

] − ρu2 sin μ (Bok3)



and neglecting all terms quadratic in the small quantities this yields

− sin μ dp = (u2dρ + 2ρudu) sin μ − ρu cos μ dv (Bok4)

• Momentum normal to the upstream wall:

cos μ dp = (ρ + dρ) [(u + du) sin μ dv − (ρ + dρ) dv dv] − ρu2 sinμ (Bok5)

and neglecting all terms quadratic in the small quantities this yields

cos μ dp = ρu sinμ dv (Bok6)

Eliminating dp and dρ from equations (Bok2), (Bok4) and (Bok6), using the trigonometric relation dv =
u dθ (neglecting quadratic terms) and the expression for sinμ:

du

u
=

dq

q
= tan μ dθ =

dθ
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Notice that when the wall turns into the flow (dθ > 0), the velocity decreases and the pressure increases;
this is known as a compression turn. On the other hand when the wall turns away from the flow (dθ < 0),
the velocity increases and the pressure decreases; this is known as an expansion turn.

In addition the above basic equations with the perfect gas law and the definition of the Mach number
yield:

dp

p
=

γM2 dθ
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;
dT

T
=

(γ − 1)M2 dθ
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;
dρ

ρ
=

M2 dθ
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dM

M
= − [1 + (γ − 1)M2/2]

(M2 − 1)
1
2

dθ (Bok9)

We note that it has not been assumed that the change is isentropic; in fact, since dp/p = γdρ/ρ it is, in
fact, isentropic because the changes are very small.

A number of useful examples of solutions to supersonic flows involving small flow deflections will be
developed.

Supersonic Flow past a flat plate at a small angle of attack:

A convenient and useful example of such a flow is an infinitely thin flat plate set at a small angle of attack
(α) to an oncoming supersonic stream of Mach number, M , as sketched in Figure 2. The angle of turn
from the upstream flow to the flow on the upper side of the plate (Region 2) is then dθ = −α and therefore,
according to the relation (Bok8), the pressure difference p2 − p1 is given by

p2 − p1 = − γM2
1 αp1
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1
2

= − ρ1q
2
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1
2
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On the other hand the angle of turn from the upstream flow to the flow on the lower side of the plate
(Region 3) is dθ = α and therefore, according to the relation (Bok8), the pressure difference p2 − p1 is
given by

p3 − p1 =
γM2

1 αp1
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=
ρ1q
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Figure 2: Supersonic flow past a flat plate at a very small angle of attack, α.

Figure 3: Flat plate lift/slope, CL/α, plotted against the upstream Mach number, M1.

Hence the pressure difference across the plate is

p3 − p2 =
2ρ1q
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and, to leading order in α, the resulting lift and drag forces acting on the plate, L and D, are

L =
2ρ1q

2
1αA
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and D =
2ρ1q
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where A is the planform area of the plate. Using the normal definitions, the lift and drag coefficients, CL

and CD, are

CL =
2L

ρ1q2
1A

=
4α
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and CD =
2D

ρ1q2
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1
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Figure 3 is a plot of the lift/slope, CL/α, for the flat plate plotted against the upstream Mach number,
M1; it includes the zero Mach number value of 2π.

Supersonic flow past a triangular airfoil at a small angle of attack:

The next example involves a minor modification to the first example, designed to demonstrate the effect
of finite thickness on the performance of an airfoil in supersonic flow. For simplicity we will solve the flow
sketched in Figure 4, an airfoil with a triangular cross-section where the thickness is represented by the
angle, β. Then, using equation (Bok8) the pressures in regions 2, 3 and 4 become

Figure 4: Triangular airfoil at a small angle of attack.
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and, therefore, to first order, the lift and drag coefficients for this triangular airfoil are

CL =
2L

ρ1q2
1A
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4α
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In words, the “thickness” represented by the angle β has increased the drag without changing the lift
(to first order) and therefore the thickness has reduced the performance of the airfoil. Of course, in
practice, the “thickness” is necessary to provide the structural strength to withstand the lift and drag
forces and, consequently, the design necessarily involves an optimization involving both a structural and a
fluid mechanical analysis.

Small deflection supersonic flows past other polygonal objects:

From the preceding examples it is clear that solutions for small deflection supersonic flows past any polyg-
onal object are readily obtained by tracing the flow as it proceeds through the Mach waves generated
by each vertex of the object and evaluating the changes in the flow velocity, pressure, temperature and
density that occur in each wave. In doing so one recognizes the great advantage over subsonic flows in
that in supersonic flow the flow downstream of each wave can not effect the flow upstream. Moreover, as
long as the deflections are small, there are two further simplifications. First, since the change across a
Mach wave is isentropic (or sufficiently close that the discrepancy is negligible to first order in the small
changes) the entire flow is isentropic. Second, since the change in the Mach number across each wave
is small, the changes in the pressure, temperature and density are linearly proportional to the deflection
angles and do not depend on the changes in the Mach number. Therefore, the difference between the



pressure (or temperature or density) at any point in the flow and the pressure (or temperature or density)
in the flow far upstream depends only on the difference between the flow inclination at that point and the
upstream inclination and does not depend on the intermediate states or deflections. Thus the pressure
(or temperature or density) at any point is readily determined knowing only the flow direction at that
point and the upstream pressure and Mach number. We shall see that these properties of flows with small
angular deflections are not necessarily retained when the flow deflection angles are large (see the following
sections).

Small deflection supersonic flows past curved surfaces:

The properties described above are particularly useful in developing solutions for small deflection supersonic
flows past objects with curved surfaces, such as that sketched in Figure 5. Defining an object with curved

Figure 5: Curved object at small angles to the oncoming supersonic stream.

surfaces described by a mid-thickness profile, h(x), and a thickness, t(x), where x is a coordinate parallel
with the oncoming stream as shown in Figure 5, the local flow will be determined by a distribution of
Mach waves emanating from the surface and determined by the local change in the surface inclination,
d(h + t/2)/dx for the upper surface and d(h − t/2)/dx for the lower surface. (Note that the flow will not
consist of discrete Mach waves but a continuous distribution though it may be useful to visualize that
distribution as discrete.) Consequently, using equation (Bok8), the difference between the local pressure
on the upper surface, p1(x), and the upstream pressure, p0, is given by

p1(x) − p0 =
γM2
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d(h + t/2)

dx
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and the corresponding pressure distribution, p2(x), on the lower surface will be given by

p2(x)− p0 = − γM2
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dx
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so that the pressure difference acting on the object in the direction normal to the oncoming flow is

p2(x) − p1(x) = − 2γM2
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dx
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The lift and drag follow by integration. For example the lift coefficient, CL becomes

CL =
4

(M2 − 1)
1
2

h0

L
(Bok20)

Reflection of a Mach wave:



This example is intended to illustrate two phenomena. First focus on the features associated with the
reflection of a Mach wave from a solid surface. In Figure 6 the Mach wave from the leading edge of the
airfoil impacts the ground at the Mach angle, μ. The flow upstream of this Mach wave is parallel with the
wall and is deflected by the airfoil so that the flow downstream in region2 is parallel with the airfoil and
at an angle, α, to the ground. But that inclination is incompatible with the inclination of the ground and
so a “reflected” Mach wave must intervene to turn the flow back to parallel with the ground in region 3.
Thus the angle of reflection of a Mach wave is equal to the angle of incidence and this will be true of all
Mach wave/wall interactions.

Figure 6: Mach wave reflection and ground effect in supersonic flow. Left: no ground effect. Right: first level ground effect.

The second important feature of this example is the effect on the lift on the airfoil. If the reflected Mach
wave does not impact the airfoil as in the left-hand version of Figure 6 then the lift is completely unaffected
by the presence of the ground. This will be the case as long as h/c > 1/M or approximately so since the
angle α was deemed to be very small. However, if h/c < 1/M (the right-hand version in Figure 6) the
reflected shock will strike the pressure surface of the airfoil and affect the lift. Note that the pressure
increases as the flow proceeds through the original Mach wave coming from the leading edge of the foil and
as it proceeds through the reflected wave and so the pressure on the undersurface of the foil downstream
of the point of impingement of the reflected wave will be greater than in the left-hand version in Figure 6.
Therefore the lift on the foil will be increased and that “ground-effect” will increase as h/c is decreased.
Yet another level of interaction with the ground will occur when h/c is decreased to the point at which a
second reflection from the ground leads to a second impingement of a Mach wave with the undersurface
of the foil but there is little additional benefit to detailing that development here.


