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Prandtl-Glauert Mapping

Turning now to subsonic flow and the elliptic partial differential equation (Bon9) that governs such a flow,
namely
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the Prandtl-Glauert transformation from the xi coordinate system to the following x∗
i coordinate system,

namely
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transforms the governing equation (Bop1) to Laplace’s equation
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Moreover if we define a modified velocity potential, φ∗, such that
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then the governing equation is still Laplace’s equation:
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and, in addition, the appropriate boundary conditions for a slender body become identical to those for φ
in the original coordinate system. For example, for planar flow, the boundary condition (Bon11),(
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Consequently, with the Prandtl-Glauert transformation, the extensive methods of and solutions for incom-
pressible potential flow can be transformed into solutions for subsonic compressible flow.

To illustrate this further, suppose we begin with an incompressible planar flow solution (for example the
flow past a Joukowski airfoil, section (Bged)) denoted by φ∗. Then, for a particular Mach number, M , we
could compute the velocity potential, φ, for that subsonic compressible potential flow, φ, around the same
object. The known coefficient of pressure for the incompressible flow, C∗

p , can then be used to calculate
the coefficient of pressure, Cp, in the compressible subsonic flow using
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Similarly the coefficients of lift and drag, CL and CD, for the compressible subsonic flow will follow from
the known coefficients, C∗

L and C∗
D, for the incompressible flow:
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though the latter is usually zero in potential flow. We note that the lift and drag coefficients tend to
increase as the Mach number increases in such subsonic flows (see section (Bok)). Figure 1 shows how the
drag coefficients around some typical objects in subsonic compressible flow tend to increase as the subsonic
Mach number is increased (the behavior in transonic flow is less readily explained though the decrease in
supersonic flow was anticipated in earlier sections.)



Figure 1: The coefficient of drag based on frontal projected area as a function of Mach number, M = U/c, for four different
projectile shapes as shown.


