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Compressible Potential Flow

Compressible potential flow refers to a methodology used to solve steady, irrotational, compressible flows
in which the direction of the velocity vector is always close to the coordinate direction, x1, of the oncoming
uniform stream of velocity, U . As we shall see it includes a range of both subsonic and supersonic flows but
excludes a range of transonic flows around M = 1. It allows existing solutions for steady, incompressible
planar and three-dimensional flows to be adapted for use as solutions for these ranges of steady, compressible
flow. Then the basic conservation equations become

• Continuity:
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• Momentum: In the absence of gravity, the unsteady terms and the viscous terms, the momentum
equation becomes
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where the second version requires specification of the thermodynamic derivative, ∂p/∂ρ. Since these
flows usually involve small changes, it is appropriate to assume that this should be the isentropic
derivative so that, denoting the isentropic speed of sound by c, equation (Bon2) becomes
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where the second version follows by using the continuity equation (Bon1).

• Irrotationality: If the flow is irrotational, this allows the definition of a velocity potential (see section
(Bga)), φ, such that
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so that the governing equation (Bon3) may be written as
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Note that if the flow is almost incompressible so the c2 � uiuj then equation (Bon5) reduces to the
equation for incompressible flow, ∇2φ = 0.

The next step is to apply the small perturbation assumption described in the introduction. The velocity
components in the i = 1, 2 and 3 directions are denoted by u1, u2 and u3 where

u1 ≈ U and u1 − U � U ; u2 � U ; u3 � U (Bon6)

and U is the constant free stream velocity. Then, though equation (Bon5) comprises nine different equa-
tions, only one is dominant namely
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Even though the c2 used in this equation was earlier defined as a local property that may therefore vary
from point to point within the flow, it is consistent with the level of approximation in this analysis to
approximate U2/c2 by M2 where M is the Mach number of the upstream flow. Thus the governing
equation becomes
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and this is the fundamental governing equation of compressible potential flow. We note immediately that
when M < 1 this is an elliptic partial differential equation for the flow whereas, when M > 1 this is
a hyperbolic partial differential equation whose solutions are different in type from those of an elliptic
equation. However, there will also be a region close to M = 1 where the nature of the flow is less clear,
where the approximations used in the above derivation may become less appropriate and where solutions
may be difficult to obtain.

The next step is to establish boundary condition for these steady, irrotational, compressible flows and
for simplicity we will confine to attention to planar flows. The notation is depicted in Figure 1. Then,

Figure 1: Small perturbation flow notation.

consistent with the level of approximation in this analysis, the condition that the flow at the solid surface
is tangential to the surface becomes(
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which, again consistent with the level of approximation in this analysis, is often approximated by(
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where the right-hand side is a known input.

Once the solution, φ(x1, x2), has been obtained, the pressures acting at the solid surface are often desired.
The coefficient of pressure, Cp, is given by
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where p∞ and ρ∞ (and T∞) are the flow conditions far upstream (where u1 = U) and the second version
follows from c2 = γp∞/ρ∞. Moreover, provided p− p∞ and T −T∞ are small it follows from the isentropic
relations and from the energy equation that
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so that from equations (Bon12) and (Bon13)
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and therefore the pressure coefficients (on both the upper and lower surfaces) can be calculated once the
solution, φ(x1, x2), has been obtained.

Moreover, for a slender body, extending from x1 = 0 to x1 = L, the lift coefficient will then follow as
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where the subscripts U and L denote the upper and lower surfaces respectively. Substituting for Cp and
integrating this yields
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where x2 = hL(x1) defines the lower surface and x2 = hU (x1) defines the upper surface. Equation (Bon16)
assumes that φ at the leading edge (x1 = 0) is the same for both the upper and lower surfaces.

The current section has identified the basic equations, boundary conditions and result computations for
compressible potential flow. However, the specifics for subsonic and supersonic solutions differ because of
the different nature of the two types of flows. In the two sections that follow we address some of those
specifics, starting in the next section (Boo) with the hyperbolic equations of supersonic flow and ending
in section (Bop) with the elliptic equations of subsonic flow.


