
An Internet Book on Fluid Dynamics

Shock Waves

It is appropriate to begin this section on normal shock waves by revisiting the piston thought experiment
begun in section (Bod) in order to construct the events that result from a larger magnitude wave. To do
so it is useful to construct a space-time diagram (an “x-t diagram”) for the series of events that result from
the motion of the piston (Figure 1). For convenience we assume that the motion of the piston begins

Figure 1: Tube with piston set in compressive motion at t = 0.

Figure 2: Space-time diagram for piston in compressive motion.

at time t = 0 and that, thereafter, it maintains a constant velocity, u; consequently it’s motion in the
space-time diagram is as shown in Figure 2. In the first instant of the motion a small compressive wave is
generated and travels down the tube with velocity, c, as shown in Figure 2. However, as demonstrated in
section (Bod) the gas behind that first wave will have a higher temperature and therefore a higher sound
speed and so waves originating at the piston face a little later in time (as shown by waves 2, 3, 4) will travel
progressively faster. Ultimately they will catch up with the waves ahead of them thus creating a larger
wave from the accumulation of small waves (the process is not, of course discrete as depict in the diagram
but continuous). The large amplitude wave that results from this accumulation is called a shock wave.
One can visualize that it will travel faster than the first wave, faster than the speed of sound. Therefore
it will not disperse since any small wave that might move ahead would have to travel through the gas at a
slower velocity. It can also be shown by similar reasoning that no small fraction of the shock will break-off
and get left behind for the same reasons.

The focus of this section will be on the conditions across a shock wave but for completeness and later
reference we will briefly note what happens in the circumstance in which the piston is pulled backwards
in an expansive rather than compressive motion as sketched in Figure 3. The space-time diagram for such
an expansive motion is shown in Figure 4. The first wave still travels at the sound speed in the gas prior
to the initiation of the motion. But the temperature behind that first wave is now less than that ahead
of the first wave and so the second wave travels slower than the first wave. Subsequently waves travel



progressively slower still and the result is a fan of waves (known as an expansion fan) that continue to
disperse or spread apart as they progress downstream. Moreover the mean speed of the fan is significantly
slower than the speed of sound.

Figure 3: Tube with piston set in expansive motion at t = 0.

Figure 4: Space-time diagram for piston in expansive motion.

We will now proceed to determine the relations between the flow properties upstream of a shock wave
(denoted by subscript 1) and those downstream of the shock (denoted by subscript 2). It is most convenient
to conduct this investigation in a frame of reference fixed in the shock as shown in Figure 5. We anticipate

Figure 5: Frame fixed in a shock wave.

that the flow undergoes a non-isentropic process as it passes through the shock wave and therefore the
conservation relations that need to be satisfied are those of mass, momentum and energy together with the
equation of state (the perfect gas law in the present construction). These lead to the following relations
between the fluid properties upstream and downstream of the shock:

• Continuity:
ρ1u1 = ρ2u2 (Boh1)

since the shock is assume infinitely thin and therefore the area of the flow is the same on both sides.



• Energy:
cpT1 + u2

1/2 = cpT2 + u2
2/2 = cpT0 (Boh2)

where T0 is the stagnation temperature which must be the same on both sides of the shock.

• Momentum:
p1 − p2 = ρ2u
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using continuity.
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The momentum and continuity equations lead to

u1u2(u2 − u1) = R(u2 − u1)
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This means that either u1 = u2 and there is no shock since all the flow properties are the same across the
shock or
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This is known as Prandtl’s equation for a shock wave. After some algebra, it leads to the relation between
the Mach numbers on either side of a shock:
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or
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The resulting downsream Mach numbers, M2, are plotted in Figure 6 and tabulated in Figure 9 as a
function of the upstream Mach number, M1. Relations between the other properties upstream and
downstream of the shock also follow from the basic equations (Boh1) through (Boh5) once M2 has been
determined:
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It is also useful to derive the relation between the stagnation pressures on the two sides of the shock, p01

and p02, where
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The ratio p02/p01 is plotted as a fuction of M1 in Figure 6 which demonstrates that the stagnation pressure
always decreases across a shock. The other ratios, p2/p1, T2/T1, and ρ2/ρ1 are plotted against M1 in Figure
7 and all of these ratios are tabulated in Figure 9 for a range of upstream Mach numbers.



Figure 6: Graphs of M2 and p02/p01 against inlet Mach number, M1.

Figure 7: Graphs of p2/p1, T2/T1 and ρ2/ρ1 against inlet Mach number, M1.

In addition, it is important to evaluate the entropy change across the shock which can be obtained by
integrating the basic thermodynamic relation:

T ds = cv dT + pd
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to obtain
(s2 − s1)
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This quantity, (s2 − s1)/cv, is plotted against M1 in Figure 8. Note that the entropy increases for a shock
with M1 > 1 but decreases for M1 < 1. It follows from the second law of thermodynamics that it is
not possible to have a shock with a subsonic upstream flow. Shocks only occur with supersonic upstream
conditions and therefore subsonic downstream flow.

Figure 8: Graph of (s2 − s1)/cv as a function of the inlet Mach number, M1.

As was discussed in the introduction to this section, a shock wave is self-steepening in the sense that any
small waves that might possibly detach from the upstream or downstream sides of the shock propagate
back into the shock since the wave velocity ahead of the shock is less than the shock speed while the wave
velocity behind the shock is greater than the shock speed. Then, one remaining question is what determines
the thickness, ε, of the shock? To answer this, recall that the non-isentropic character of a shock wave is a
result of the irreversible changes that occur within its structure as kinetic energy is converted to heat. The
mechanism for this conversion is the action of viscosity and therefore the thickness of a shock is necessarily
proportional to the viscosity, μ, of the fluid. Since the only other quantities that might determine ε are
the fluid density, ρ, and the strength of the shock, Δp = p2 − p1 dimensional analysis requires that

ε ∝ μ

(ρΔp)
1
2

(Boh15)

The actual thickness of a shock wave in air is very small indeed, of the order of the molecular mean free
path and therefore requires more detailed analysis than can be followed here.

Shock waves occur in a myriad of different contexts, a few of which will be discussed in the sections that
follow. They represent a mechanism by which a supersonic flow can transition to a subsonic flow and they
consequently occur where the boundary conditions necessitate such a transition. In the next section we
explore one such context.



Figure 9: Tabulated values of M2, p2/p1, T2/T1, ρ2/ρ1 and p02/p01 against the inlet Mach number, M1, for a normal shock
wave with γ = 1.4.


