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Positive Displacement Pumps

Positive displacement pumps are those in which volumes of the inlet fluid are periodically captured me-
chanically and transported to the discharge at a higher pressure where they are released. They have the
advantage that they deliver a particular flow rate relatively independent of the head rise.

Figure 1: Schematic of a simple positive displacement pump.

Positive displacement pumps come in different types: many are driven by a reciprocating mechanism with
passive suction and discharge valves to prevent backflow as illustrated in Figure 1. Another classic type
is the peristaltic pump (which mirrors the action in animal intestines) comprised of a flexible tube that is
squeezed by the action of a mechanical device that acts to move the liquid (or deformable solid/liquid) along
the tube as depicted in Figure 2 (right). The advantage of such a pump is that the liquid only contacts
the tube and this has great advantages as a pump for sterile medical applications or for processes handling
corrosive or dangerous liquids. Disadvantages are the inability to pump against a substantial pressure
increase and a low efficiency due to leakage; in addition peristaltic pumps require regular maintenance due
to the finite life of the flexible tube. The performance of a peristaltic pump is highly dependent on the size

Figure 2: Schematic of a typical peristaltic pump.



and flexibility of the installed tubing. The flowrate is essentially linear with the speed of rotation though
it also depends to some extent on the viscosity of the fluid being pumped. The flow rate does decrease
with the head rise though the deficit decreases as the flexibilty of the tube increases.

Another common type of positive displacement pump is the gear pump shown in Figure 3. These, too,

Figure 3: Schematic of a typical gear pump.

come in a wide variety of designs for the rotors; as another example we feature here the performance of
the AMPCO positive displacement pumps whose rotor design is exemplified in Figure 4.

Figure 4: Geometry of the AMPCO ZP1 positive displacement pumps.

We present here the non-dimensional performance of these APMCO ”circumferential piston pumps”. A
dimensionless head coefficient, ψ, is defined as

ψ = gH/R2Ω2 (Mbj1)

and the dimensionless flow coefficient, φ, is defined as

φ = Q/R2LΩ (Mbj2)

where the total head rise across the pump is denoted by H (in m), g is the acceleration due to gravity (in
m/s2), Q denotes the volume flow rate through the pump (in m3/s), Ω denotes the rotation rate of the



rotors (in radians/s) and R and L are respectively the rotor radius and axial length (respectively 0.067m
and 0.0439m for the ZP1-130 pump with a shaft spacing of 0.114m). The above definitions for head and
flow coefficients roughly parallel those used for centrifugal and axial flow pumps in section Mbbc.

The data in Figure 5 is derived from dimensional information presented in the AMPCO webpage
(http://www.ampcopumps.com) on a series of ZP1 pumps with rotors ranging in size from R = 0.0388 to
0.1047m.

Figure 5: Non-dimensional performance of the AMPCO ZP1-130 positive displacement pump. The data points for three
different Reynolds numbers were derived from dimensional information presented in the AMPCO webpage. The lines are the
theoretical performance curves from equation (Mbj6) for five different Reynolds numbers as indicated.

A theoretical performance can be constructed as follows. In the absence of any pressure rise, the flow rate,
Q0 (in m3/s), is simply given by the volume of liquid, D, captured during one rotor revolution (known
as the ”displacement”) multiplied by the revolutions per second, Ω/2π (note that for a particular rotor
geometry D ∝ R2L). We denote this zero pressure rise flow rate by Q0 = ΩD/2π. At non-zero pressure
rise, the leakage flow, ΔQ, back through the narrow passages surrounding the rotor can be approximately
evaluated using the analysis of section (Bib) for viscous flow between parallel plates as

ΔQ = κ1 ρgH R2L/μ (Mbj3)

where μ is the dynamic viscosity in kg/ms and κ1 is some dimensionless constant to be determined. The
combined flow rate, Q, is then

Q = Q0 − ΔQ = ΩD/2π − κ1 ρgH R2L/μ (Mbj4)

Then utilizing the definitions of φ and ψ and defining a Reynolds number, Re = ρΩ2R/μ, it follows that
the estimated dimensionless performance is given by

φ = Q0/ΩR
2L − κ1 ρgHR

2L/(μR2LΩ) = D/(2πR2L) − κ1 ψ Re (Mbj5)



We denote the geometric ratio D/(2πR2L) by κ2 so that the dimensionless performance is given by

φ = κ2 − κ1 ψ Re (Mbj6)

The value of κ2 for the ZP1 pumps is 0.776; values for κ1 from the tabulated test data for the ZP1 pumps
are more scattered but lie between 0.66 × 10−7 and 2.5 × 10−7 for a wide range of flow conditions and
Reynolds numbers. The performance curves for the pump ZP1-130 according to equation (Mbj6) for five
different Reynolds numbers are plotted in Figure 5.


