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Cavitation Noise

The violence of cavitation bubble collapse also produces noise. In many practical circumstances, the noise

Figure 1: Bubble natural frequency, ωP , in Hz as a function of the bubble radius and the difference between the equilibrium
pressure and the vapor pressure (in kg/m sec2) for water at 300◦K.

Figure 2: Typical acoustic signal from a single collapsing bubble (from Ceccio and Brennen 1991).

is important not only because of the vibration that it may cause, but also because it advertizes the presence
of cavitation and, therefore, the likelihood of cavitation damage. Indeed, the magnitude of cavitation noise
is often used as a crude measure of the rate of cavitation erosion. For example, Lush and Angell (1984)
have shown that, in a given flow at a given cavitation number, the rate of weight loss due to cavitation
damage is correlates with the noise as the velocity of the flow is changed.

Prior to any discussion of cavitation noise, it is useful to identify the natural frequency with which
individual bubbles will oscillate a quiescent liquid. This natural frequency can be obtained from the



Rayleigh-Plesset equation (Mbew1) by substituting an expression for R(t) that consists of a constant, RE,
plus a small sinusoidal perturbation of amplitude, R̃, at a general frequency, ω. Steady state oscillations
like this would only be maintained by an applied pressure, p(t), consisting of a constant, p̄, plus a sinusoidal
perturbation of amplitude, p̃, and frequency, ω. Obtaining the relation between the linear perturbations,
R̃ and p̃, from the Rayleigh-Plesset equation, it is found that the ratio, R̃/p̃, has a maximum at a resonant
frequency, ωP , given by
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The results of this calculation for bubbles in water at 300◦K are presented in figure 1 for various mean
pressure levels, p̄. Note that the bubbles below about 0.02 μm are supercritically damped, and have no
resonant frequency. Typical cavitation nuclei of size 10 → 100 μm have resonant frequencies in the range
10 → 100 kHz. Even though the nuclei are excited in a highly nonlinear way by the cavitation, one
might expect that the spectrum of the noise that this process produces would have a broad maximum at
the peak frequency corresponding to the size of the most numerous nuclei participating in the cavitation.
Typically, this would correspond to the radius of the critical nucleus given by the expression (Mbew13).
For example, if the critical nuclei size were of the order of 10 − 100 μm, then, according to figure 1, one
might expect to see cavitation noise frequencies of the order of 10 − 100 kHz. This is, indeed, the typical
range of frequencies produced by cavitation.

Figure 3: The acoustic impulse, I, produced by the collapse of a single cavitation bubble. Data is shown for two axisymmetric
bodies (the ITTC and Schiebe headforms) as a function of the maximum volume prior to collapse. Also shown are the
equivalent results from solutions of the Rayleigh-Plesset equation (from Ceccio and Brennen 1991).

Fitzpatrick and Strasberg (1956) were the first to make extensive use of the Rayleigh-Plesset equation
to predict the noise from individual collapsing bubbles and the spectra that such a process would produce.
More recently, Ceccio and Brennen (1991) have recorded the noise from individual cavitation bubbles in
a flow. A typical acoustic signal is reproduced in figure 2. The large positive pulse at about 450 μs
corresponds to the first collapse of the bubble. Since the radiated acoustic pressure, pA, in this context is
related to the second derivative of the volume of the bubble, V (t), by
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(where � is the distance of the measurement from the center of the bubble), the pulse corresponds to the
very large and positive values of d2V/dt2 that occur when the bubble is close to its minimum size in the



Figure 4: Typical spectra of noise from bubble cavitation for various cavitation numbers as indicated (Ceccio and Brennen
1991).

Figure 5: Typical spectra showing the increase in noise with increasing cavitation in an axial flow pump (Lee 1966).

middle of the collapse. The first pulse is followed in figure 2 by some facility-dependent oscillations, and
by a second pulse at about 1100 μs. This corresponds to the second collapse; no further collapses were
observed in these particular experiments.

A good measure of the magnitude of the collapse pulse in figure 2 is the acoustic impulse, I , defined as
the area under the curve or

I =
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pAdt (Mbei3)

where t1, t2 are the times before and after the pulse when pA = 0. The acoustic impulses for cavitation
on two axisymmetric headforms (ITTC and Schiebe headforms) are compared in figure 3 with impulses
predicted from integration of the Rayleigh-Plesset equation. Since these theoretical calculations assume
that the bubble remains spherical, the discrepancy between the theory and the experiments is not too
surprising. Indeed, the optimistic interpretation of figure 3 is that the theory can provide an order of
magnitude estimate of the noise produced by a single bubble. This could then be combined with the nuclei
number density distribution to obtain a measure of the amplitude of the noise (Brennen 1994).

The typical single bubble noise shown in figure 2 leads to the spectrum shown in figure 4. If the
cavitation events are randomly distributed in time, this would also correspond to the overall cavitation



Figure 6: The relation between the cavitation performance, the noise and vibration produced at three frequency levels in a
centrifugal pump, namely the shaft frequency (�), the blade passage frequency (�) and 40 kHz (◦) (Pearsall 1966-67).

noise spectrum. It displays a characteristic frequency content in the range of 1 → 50 kHz (the rapid
decline at about 80 kHz represents the limit of the hydrophone used to make these measurements). Typical
measurements of the noise produced by cavitation in an axial flow pump are illustrated in figure 5, and
exhibit the same features demonstrated in figure 4. The signal in figure 5 also clearly contains some shaft
or blade passage frequencies that occur in the absence of cavitation, but may be amplified or attenuated
by cavitation. Figure 6 contains data obtained for cavitation noise in a centrifugal pump. Note that the
noise at a frequency of 40 kHz shows a sharp increase with the onset of cavitation; on the other hand, the
noise at the shaft and blade passage frequencies show only minor changes with cavitation number. The
decrease in the 40 kHz cavitation noise as breakdown is approached is also a common feature in cavitation
noise measurements.

The level of the sound produced by a cavitating flow is the result of two factors, namely the impulse,
I , produced by each event (equation (Mbei3)) and the event rate or number of events per second, ṄE.
Therefore, the sound pressure level, pS , will be

pS = IṄE (Mbei4)

Here, we will briefly discuss the scaling of the two components, I , and ṄE , and thus the scaling of the
cavitation noise, pS . We emphasize that the following equations omit some factors of proportionality
necessary for quantitative calculations.

Both the experimental observations and the calculations based on the Rayleigh-Plesset equation, show
that the nondimensional impulse from a single cavitation event, defined by

I∗ = 4πI�
/
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(where U and D are the reference velocity and length in the flow), is strongly correlated with the maximum
volume of the cavitation bubble (maximum equivalent volumetric radius = RM), and appears virtually
independent of the other flow parameters. In dimensionless terms,
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It follows that
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The evaluation of the impulse from a single event is then completed by some estimate of the maximum bub-
ble size, RM . For example, we earlier estimated RM for traveling bubble cavitation (equation (Mbew12)),
and found it to be independent of U for a given cavitation number. In that case I is linear in U .

Modeling the event rate, ṄE , can be considerably more complicated than might, at first sight, be
visualized. If all the nuclei flowing through a certain known streamtube (say with a cross-sectional area,
AN , in the upstream reference flow), were to cavitate similarly then, clearly, the result would be

ṄE = N AN U (Mbei8)

where N is the nuclei concentration (number/unit volume). Then the sound pressure level resulting from
substituting the expressions (Mbei8), (Mbei7), and (Mbew12) into equation (Mbei4), is

pS ≈ ρU2 (−σ − Cpmin)2 ANND2
/
� (Mbei9)

where we have omitted some of the constants of order unity. For the simple circumstances outlined,
equation (Mbei9) yields a sound pressure level that scales with U2 and with D4 (because AN ∝ D2). This
scaling with velocity does correspond to that often observed (for example, Blake, Wolpert, and Geib 1977,
Arakeri and Shangumanathan 1985) in simple traveling bubble flows. There are, however, a number of
complicating factors. First, as we have discussed earlier in section (Mbew), only those nuclei larger than
a certain critical size, RC , will actually grow to become cavitation bubbles, and, since RC is a function of
both σ and the velocity U , this means that N will be a function of RC and U . Since RC decreases as U
increases, the power law dependence of pS on velocity will then be Um where m is greater than 2.

Different scaling laws will apply when the cavitation is generated by turbulent fluctuations, such as in a
turbulent jet (see, for example, Ooi 1985, Franklin and McMillan 1984). Then the typical tension and the
typical duration of the tension experienced by a nucleus, as it moves along an approximately Lagrangian
path in the turbulent flow, are very much more difficult to estimate. Consequently, estimates of the sound
pressure due to cavitation in turbulent flows, and the scaling of that sound with velocity, are more poorly
understood.


