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Unsteady Flows

Many of the phenomena listed in section (Mbfa) require some knowledge of the unsteady flows correspond-
ing to the steady cascade flows discussed in sections (Mbcb) and (Mbce). In the case of non-cavitating
axial cascades, a large volume of literature has been generated in the context of gas turbine engines, and
there exist a number of extensive reviews including those by Woods (1961), McCroskey (1977), Mikolajczak
et al. (1975) and Platzer (1978). Much of the analytical work utilizes linear cascade theory, for example,
Kemp and Sears (1955), Woods (1955), Schorr and Reddy (1971), and Kemp and Ohashi (1975). Some of
this has been applied to the analysis of unsteady flows in pumps and extended to cover the case of radial
or mixed flow machines. For example, Tsukamoto and Ohashi (1982) utilized these methods to model the
start-up transients in centifugal pumps and Tsujimoto et al. (1986) extended the analysis to evaluate the
unsteady torque in mixed flow machines.

However, most of the available methods are restricted to lightly loaded cascades and impellers at low
angles of incidence. Other, more complex, theories (for example, Adamczyk 1975) are needed at larger
angles of incidence and for highly cambered cascades when there is a strong coupling between the steady
and unsteady flow (Platzer 1978). Moreover, most of the early theories were only applicable to globally
uniform unsteady flows in which the blades all move in unison. Samoylovich (1962) appears to have been
the first to consider oscillations with arbitrary interblade phase differences, the kind of analysis needed for
flutter investigations (see below).

When the incidence angles are large so that the blades stall, one must resort to unsteady free streamline
methods in order to model the flows (Woods 1961). Apart from the work of Sisto (1967), very little
analytical work has been done on this problem which is of considerable importance in the context of
turbomachinery. One of the fluid mechanical complexities is the unsteady or dynamic response of a
separated flow that may lead to significant departures from the sucession of events one might construct
based on a quasistatic approach. Some progress has been made in understanding the “dynamic stall” for a
single foil (see, for example, Ham 1968). However, it would appear that more work is needed to understand
the complex dynamic stall phenomena in turbomachines.

Unsteady free streamline analyses can be more confidentally applied to the analysis of cavitating cascades
because the cavity or free streamline pressure is usually known and constant whereas the corresponding
pressure for the wake flows may be varying with time in a way that is difficult to predict. Thus, for example,
the unsteady response for a single supercavitating foil (Woods 1957, Martin 1962, Parkin 1962) has been
compared with experimental measurements by Acosta and DeLong (1971). As an example, we present
(figure 1) some data from Acosta and DeLong on the unsteady forces on a single foil undergoing heave
oscillations at various reduced frequencies, w* = wc/2U. The oscillating heave motion, d, is represented by

d = Re {d'ejwt} (Mbfe1)

where the complex quantity, d~, contains the amplitude and phase of the displacement. The resulting lift
coefficient, C,, is decomposed (using the notation of sections (Gbc)) into

Cr = CL + Re {Cthejwt} (beCQ)

and the real and imaginary parts of C‘Lh/w* which are plotted in figure 1 represent the unsteady lift
characteristics of the foil. It is particularly important to note that substantial departures from quasistatic
behaviour occur for reduced frequencies as low as 0.2, though these departures are more significant in the
noncavitating flow than in the cavitating flow. The lines without points in figure 1 present results for the
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Figure 1: Fluctuating lift coefficient, C, for foils undergoing heave oscillations at a reduced frequency, w* = we/U. Real
and imaginary parts of Crj, /w* are presented for (a) non-cavitating flow at mean incidence angles of 0° and 6° (b) cavitating
data for a mean incidence of 8°, for very long choked cavities (O) and for cavities 3 chords in length (). Adapted from
Acosta and DeLong (1971).

corresponding linear theories and we observe that the agreement between the theory and the experiments
is fairly good. Notice also that the Re{—C'Lh} for noncavitating foils is negative at low frequencies but
becomes positive at larger w whereas the values in the cavitating case are all positive. Similar data for
cavitating cascades would be necessary in order to analyse the potential for instability in cavitating, axial
flow pumps. The author is not aware of any such data or analysis.

The information is similarly meagre for all of the corresponding dynamic characteristics of radial rather
than axial cascades and, consequently, our ability to model dynamic instabilities in centrifugal pumps is
very limited indeed.



