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Performance of Propellers

The performance of a propeller is typically presented using the following characteristics

F = Propeller Thrust ; T = Propeller Torque ; vmi1 = Inflow velocity far upstream (Mfc1)

and the following non-dimensional parameters; the advance ratio J1, the flow coefficient, Jp, the thrust
coefficient, CF , the torque coefficient, CT , and the efficiency, η (see section (Mfd)), defined as follows:

J1 =
πvmi1

RΩ
; Jp = πφ =

πvmp1

RΩ
; CF =

F

ρR2Ω2Ap
(Mfc2)

CT =
2T

ρR2Ω2Ap
; η =

Fvmi1

ΩT
(Mfc3)

where R and Ω are the propeller radius and radian frequency of rotation, the flow notation is defined below
and φ is the flow coefficient used in describing pump flows.

In what follows we present an approximate, one-dimensional analysis of the performance of a propeller
mounted in a wind or water tunnel since that is typically the context in which performance measurements
are made. The influence of the tunnel walls will emerge from the performance data presented.

Figure 1: Schematic and notation of a propeller in a tunnel; the cavitation volume is shown in red.

Consider the one-dimensional, incompressible flow through a propeller (either cavitating or non-cavitating)
in a wind or water tunnel as shown in Figure 1. The propeller (cross-sectional area Ap) is located on the
centerline of the tunnel whose cross-sectional area is A∗. We consider both the stream tube that proceeds
through the propeller and the external stream tube that does not pass through the propeller. For simplicity,
it will be assumed that the flow is uniformly distributed across these stream tubes and is one-dimensional.
Friction and mixing losses between the inner and outer stream tubes are neglected. Mass conservation in
this steady flow requires that

vmi1A1 = vmp1Ap = vmi2A2 ; vmp2 = vmp1 ; vmi2A2 + vmo2(A
∗ −A2) − vmi1A

∗ = 0 (Mfc4)

where vmi and vmo denote velocities in the inner and outer flows, A denotes the cross-sectional area of the
inner stream tube, and the additional subscripts 1, 2 and p respectively denote quantities far upstream (or



at the propeller inlet), far downstream (or at the propeller discharge), and at the propeller itself. It has
been assumed that the velocities in inner the outer flows are the same far upstream. The relation between
the pressures far upstream and far downstream is obtained by applying Bernoulli’s equation in the outer
flow as follows:

p2 − p2 =
1

2
ρ
{
v2

mi1 − v2
mo2

}
(Mfc5)

The thrust force F produced by the propeller may be assessed using three relations. First, the momentum
theorem applied to a control volume containing all the tunnel flow yields;

F =
1

2
ρ(vmi1 − vmo2)A

∗(2vmi2 + vmo2 − vmi1) (Mfc6)

Second, the total pressure difference across the propeller, ΔpT , follows from the Euler head as

ΔpT = ρRΩ(RΩ − vmp2 cotβ) (Mfc7)

where β denotes the discharge flow angle from the blades. Since the static pressure difference, pp2 − pp1, is
given by

pp2 − pp1 =
1

2
ρ
{
R2Ω2 − v2

mp2 cot β
}

(Mfc8)

the thrust force can be computed as

F =
1

2
ρ
{
R2Ω2 − v2

mp2 cotβ
}

Ap (Mfc9)

Third, the pressures pp1 and pp2 may be related to the upstream and downstream conditions using Bernoullis
equation:

pp1 = p1 +
1

2
ρv2

mi1 −
1

2
ρv2

mp1 (Mfc10)

Applying Bernoulli’s equation between the outlet of the propeller and far downstream, we obtain

pp2 = p2 +
1

2
ρ
[
v2

mi2 + v2
θp2(Ap/A2)

] − 1

2
ρ
[
v2

mp2 + v2
θp2

]

= p2 +
1

2
ρv2

mi2 −
1

2
ρv2

mp2 +
1

2
ρ [RΩ − vmp2 cot β]2 [(Ap/A2) − 1] (Mfc11)

Then the thrust force F follows as

F = (pp2 − pp1)Ap =
1

2
ρ
[{

v2
mi2 − v2

mo2

}
+ {RΩ − vmp2 cotβ}2 {(Ap/A2) − 1}]Ap (Mfc12)

The total mass flow rate and static pressure downstream of the propeller are defined downstream of the
mixing of the flows in the inner and outer stream tubes. The mass flow rate and pressure after mixing, m2

and p′2, are obtained by applying continuity and momentum conservation as follows:

m2 = ρ [vmi2A2 + vmo2(A
∗ − A2)] = ρv′

mi2A
∗ (Mfc13)

p2A
∗ + ρv2

mi2A2 + ρv2
mo2(A

∗ − A2) = p′2A
∗ + ρv′ 2

mi2A
∗ (Mfc14)

Summarizing, we note that the eight equations (Mfc4) through (Mfc12) contain eight unknowns vmo2,
vmi2, vmp2, vmp1, A1, A2, F , and p2 assuming that the propeller operating parameters vmi1, p1, RΩ, and
the discharge flow angle, β, are given. For present purposes the discharge flow angle, β, is assumed known
and independent of the other flow parameters except when cavitation occurs; this case is examined in the



section on cavitation performance. With this in mind, we will proceed to discuss the steady flow solutions
of equations (Mfc4) to (Mfc12). These equations can be solved provided the operating conditions, vmi1, p1,
RΩ and the discharge flow angle, β, are specified. For the purposes of illustration, we choose to present
results for a typical discharge flow angle of β = 25◦. The results are presented using the non-dimensional
parameters; the advance ratio J1, the propeller flow coefficient Jp and the propeller thrust coefficient, CT .

Note that as the incoming velocity, vmi1, is decreased, the inner stream tube expands far upstream and
its cross-sectional area, A1, reaches that of the tunnel, A∗, at a certain value of vmi1. When the incoming
velocity is smaller than this value, equation (Mfc5) no longer applies. In such cases, the steady solution
is obtained by setting A1 = A∗ and vmo2 = 0, and eliminating the last of equations (Mfc4), because it
becomes identical to the combination of the first three.

Figure 2: Steady characteristics of a non-cavitating propeller with a discharge flow angle of β = 25◦. The propeller is located
at the center of the duct with cross-sectional areas of A∗/Ap = 1, 2 and 10.

Typical results are shown in Figure 2. Various values of the cross-sectional area ratio, A∗/Ap, were selected
in order to examine the effect of the presence of the tunnel walls. The case with A∗/Ap = 1 corresponds
closely to that of a typical axial flow pump, because all the flow from upstream proceeds through the
propeller (assuming no tip leakage flow for simplicity) and there is no outer flow. For the cases with



A∗/Ap = 2 and 10, a critical advance ratio, J∗
1 (approximately J∗

1 = 0.58 and 0.12 for A∗/Ap = 2 and
10, respectively) exists at which the cross-sectional area of stream tube far upstream, A1, is equal to that
of the duct, A∗. Below the critical advance ratio, the propeller works like a axial flow pump with all the
fluid flowing through the propeller. The results for A∗/Ap = 10 have been found to adequately represent
the open condition (A∗/Ap = ∞) except at very low advance ratios, where the analysis breaks down for
reasons discussed elsewhere.

Figure 2 presents the thrust coefficient, CF , the propeller flow coefficient, Jp, and the cross-sectional areas,
A1/Ap and A2/Ap, plotted against the advance ratio, J1. For A∗/Ap = 2 and 10, as the advance ratio
decreases, the flow coefficient decreases gradually and the thrust coefficient increases gradually. This is
because, as the advance ratio is decreased, the propeller is taking fluid from a wider upstream stream
tube. The variations of the thrust coefficient and the flow coefficient are more gradual than those for
A∗/Ap = 1. However, below the critical advance ratio where the propeller works like an axial flow pump,
the flow coefficient rapidly decreases and the thrust coefficient rapidly increases, and these variations are
more significant than for A∗/Ap = 1. The decrease in the flow coefficient is related directly to the advance
ratio, so that the slope of the flow coefficient in Figure 2 gets steeper as the duct gets wider.


