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Steady Radial Forces

We now change the focus of attention back to pumps, and, more specifically, to the kinds of radial and
rotordynamic forces which may be caused by the flow through and around an impeller. Unlike some of the
devices discussed in the preceding sections, the flow through a pump can frequently be nonaxisymmetric
and so can produce a mean radial force that can be of considerable importance. The bearings must
withstand this force, and this can lead to premature bearing wear and even failure. Bearing deflection can
also cause displacement of the axis of rotation of the impeller, that may, in turn, have deleterious effects
upon hydraulic performance. The existence of radial forces, and attempts to evaluate them, date back to
the 1930s (see Stepanoff’s comment in Biheller 1965) or earlier.

Figure 1: Radial forces for the centrifugal Impeller X/Volute A combination as a function of shaft speed and flow coefficient
(Chamieh et al. 1985).

The nonaxisymmetries and, therefore, the radial forces depend upon the geometry of the diffuser and/or
volute as well as the flow coefficient. Measurements of radial forces have been made with a number of
different impeller/diffuser/volute combinations by Agostonelli et al. (1960), Iverson et al. (1960), Biheller
(1965), Grabow (1964), and Chamieh et al. (1985), among others. Stepanoff (1957) proposed an empirical



Figure 2: Comparison of the radial forces measured by Iverson, Rolling and Carlson (1960) on a pump with a specific speed,
ND, of 0.36, by Agostinelli, Nobles and Mockeridge (1960), on a pump with ND = 0.61, by Domm and Hergt (1970), and by
Chamieh et al. (1985) on a pump with ND = 0.57.

formula for the magnitude of the nondimensional radial force,
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for centrifugal pumps with spiral volutes, and

|F0| = 0.229ψQ/QD (Mcj2)

for collectors with uniform cross-sectional area. Both formulae yield radial forces that have the correct
order of magnitude; however, measurements show that the forces also depend on other geometric features
of the impeller and its casing.

Some typical nondimensional radial forces obtained experimentally by Chamieh et al. (1985) for the
Impeller X/Volute A combination (see section (Mbbi)) are shown in figure 1 for a range of speeds and flow
coefficients. First note that, as anticipated in the nondimensionalization, the radial forces do indeed scale
with the square of the impeller speed. This implies that, at least within the range of rotational speeds used
for these experiments, the Reynolds number effects on the radial forces are minimal. Second, focusing on
Chamieh’s data, it should be noted that the “design” objective that Volute A be well matched to Impeller
X appears to be satisfied at a flow coefficient, φ2, of 0.092 where the magnitude of the radial force appears
to vanish.



Figure 3: Comparison of the magnitude of the radial force (F0) on Impeller X caused by Volute A and by the circular Volute
B with a circumferentially uniform area (Chamieh et al. 1985).

Other radial force data are presented in figure 2. The centrifugal pump tested by Agostinelli, Nobles
and Mockeridge (1960) had a specific speed, ND, of 0.61, and was similar to that of Chamieh et al. (1985).
On the other hand, the pump tested by Iversen, Rolling and Carlson (1960) had a much lower specific
speed of 0.36, and the data of figure 2 indicates that their impeller/volute combination is best matched
at a flow coefficient of about 0.06. The data of Domm and Hergt (1970) is for a volute similar to Volute
A and, while qualitatively similar to the other data, has a significantly smaller magnitude than the other
three sets of data. The reasons for this are not clear.

The dependence of the radial forces on volute geometry is illustrated in figure 3 from Chamieh et al.
(1985) which presents a comparison of the magnitude of the force on Impeller X due to Volute A with the
magnitude of the force due to a circular volute with a circumferentially uniform cross-sectional area. In
theory, this second volute could only be well-matched at zero flow rate; note that the results do exhibit a
minimum at shut-off. Figure 3 also illustrates one of the compromises that a designer may have to make.
If the objective were to minimize the radial force at a single flow rate, then a well-designed spiral volute
would be appropriate. On the other hand, if the objective were to minimize the force over a wide range of
flow rates, then a quite different design, perhaps even a constant area volute, might be more effective. Of
course, a comparison of the hydraulic performance would also have to be made in evaluating such design
decisions. Note from figure 1, section (Mbej), that the spiral volute is hydraulically superior up to a flow
coefficient of 0.10 above which the results are circular volute is superior.

As further information on the variation of the magnitude of the radial forces in different types of pump,
we include figure 4, taken from KSB (1975), which shows how F0/ψ may vary with specific speed and flow
rate for a class of volute pumps. The magnitudes of the forces shown in this figure are larger than those



Figure 4: Variation of the radial force magnitude, F0, divided by the head coefficient, ψ, as a function of specific speed, ND,
and flow for a class of volute casing pumps (adapted from KSB 1975).

of figure 2. We should also note that the results of Jery and Franz (1982) indicate that the presence of
diffuser vanes (of typical low solidity) between the impeller discharge and the volute has relatively little
effect on the radial forces.

It is also important to recognize that small changes in the location of the impeller within the volute
can cause large changes in the radial forces. This gradient of forces is represented by the hydrodynamic
stiffness matrix, [K] (see section (Mcb)), for which data will be presented in the context of the rotordynamic
coefficients. The dependence of the radial force on the impeller position also implies that, for a given
impeller/volute combination at a particular flow coefficient, there exists a particular location of the axis of
impeller rotation for which the radial force is zero. As an example, the locus of zero radial force positions
for the Impeller X/Volute A combination is presented in figure 5. Note that this location traverses a
distance of about 10% of the impeller radius as the flow rate increases from zero to a flow coefficient of
0.14.

Visualizing the centrifugal pump impeller as a control volume, one can recognize three possible contri-
butions to the radial force. First, circumferential variation in the impeller discharge pressure (or volute
pressure) will clearly result in a radial force acting on the impeller discharge area. A second contribution
could be caused by the leakage flow from the impeller discharge to the inlet between the impeller shroud
and the pump casing. Circumferential nonuniformity in the discharge pressure could cause circumferential
nonuniformity in the pressure within this shroud-casing gap, and therefore a radial force acting on the
exterior of the pump shroud. For convenience, we shall term this second contribution the leakage flow con-
tribution. Third, a circumferential nonuniformity in the flow rate out of the impeller would imply a force
due to the nonuniformity in the momentum flux out of the impeller. This potential third contribution has
not been significant in any of the studies to date. Both the first two contributions appear to be important.

In order to investigate the origins of the radial forces, Adkins and Brennen (1988) (see also Brennen et
al. 1986) made measurements of the pressure distributions in the volute, and integrated these pressures to
evaluate the contribution of the discharge pressure to the radial force. Typical pressure distributions for
the Impeller X/Volute A combination (with the flow separation rings of figure 7 installed) are presented in
figure 6 for three different flow coefficients. Minor differences occur in the pressures measured in the front
sidewall of the volute at the impeller discharge (front taps) and those in the opposite wall (back taps).

The experimental measurements in figure 8 are compared with theoretical predictions based on an
analysis that matches a guided impeller flow model with a one-dimensional treatment of the flow in the



Figure 5: Locus of the zero radial force locations for the Impeller X/Volute A combination (Chamieh et al. 1985) compared
with that from the data of Domm and Hergt (1970).

volute. This same theory was used to calculate rotordynamic matrices and coefficients presented in section
(Mcm). In the present context, integration of the experimental pressure distributions yielded radial forces
in good agreement with both the overall radial forces measured using the force balance and the theoretical
predictions of the theory. These results demonstrate that it is primarily the circumferential nonuniformity
in the pressure at the impeller discharge that generates the radial force. The theory clearly demonstrates
that the momentum flux contribution is negligible.

The leakage flow from the impeller discharge, between the impeller shroud and the pump casing, and
back to the pump inlet does make a significant contribution to the radial force. Figure 7 is a schematic of
the impeller, volute, and casing used in the experiments of Chamieh et al. (1985) and Adkins and Brennen
(1988), as well as for the rotordynamic measurements discussed later. Adkins and Brennen obtained data
with and without the obstruction at the entrance to the leakage flow labelled “flow separation rings”.
The data of figures 6 and 8 were taken with these rings installed (whereas Chamieh’s data was taken
without the rings). The measurements showed that, in the absence of the rings, the nonuniformity in the
impeller discharge pressure caused significant nonuniformity in the pressure in the leakage annulus, and,
therefore, a significant contribution from the leakage flow to the radial force. This was not the case once
the rings were installed, for the rings effectively isolated the leakage annulus from the impeller discharge
nonuniformity. However, a compensating mechanism exists which causes the total radial force in the two
cases to be more or less the same. The increased leakage flow without the rings tends to relieve some
of the pressure nonuniformity in the impeller discharge, thus reducing the contribution from the impeller
discharge pressure distribution.



Figure 6: Circumferential pressure distributions in the impeller discharge for the Impeller X/Volute A combination at three
different flow rates. Also shown are the theoretical pressure distributions of Adkins and Brennen (1988).

Figure 7: Schematic of the Impeller X/Volute A arrangement used for the experiments of Chamieh et al. (1985) and Adkins
and Brennen (1988).



Figure 8: Comparison of radial forces from direct balance measurements, from integration of measured pressures, and from
theory for the Impeller X/Volute A combination (from Adkins and Brennen 1988).

A number of other theoretical models exist in the literature. The analysis of Lorett and Gopalakrishnan
(1983) is somewhat similar in spirit to that of Adkins and Brennen (1988). Earlier analyses, such as those
of Domm and Hergt (1970) and Colding-Jorgensen (1979), were based on modeling the impeller by a
source/vortex within the volute and solutions of the resulting potential flow. They represent too much of
a departure from real flows to be of much applicability.

Finally, we note that the principal focus of this section has been on radial forces caused by circumferential
nonuniformity in the discharge conditions. It must be clear that nonuniformities in the inlet flow due, for
example, to bends in the suction piping are also likely to generate radial forces. As yet, such forces have
not been investigated. Moreover, it seems reasonable to suggest that inlet distortion forces are more likely
to be important in axial inducers or pumps than in centrifugal pumps.


