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Radial Equilibrium Example

For the purposes of this example of a radial equilibrium solution, the flow through the pump impeller is
subdivided into streamtubes, as shown in figure 1, section (Mbdb). We choose to examine one generic
streamtube with an inlet radius, r1, and thickness, dr1. Both the position, n, and the thickness, dn, of
the streamtube at discharge are not known a priori, and must be determined as a part of the solution.
Conservation of mass requires that

vm1r1dr1 = vm2(n)(RH2 + n cos ϑ)dn (Mbdc1)

where n is a coordinate measured normal to the streamlines at discharge and n = 0 at the hub so that
r2 = RH2 + n cos ϑ.

Applying the radial equilibrium assumption, the pressure distribution over the exit plane is given by
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It is also necessary to specify the variation of the discharge blade angle, βb2(n), with position, and, for the
reasons described in section (Mbdb), we choose the helical distribution given by equation (Mbbb2). Note
that this implies helical blades in the case of an axial flow pump with ϑ = 0, and a constant βb2 in the
case of a centrifugal pump with ϑ = 90◦. Moreover, we shall assume that the flow at discharge is parallel
with the blades so that β2(n) = βb2(n).

The formulation of the problem is now complete, and it is a relatively straightforward matter to eliminate
p2(n) from equations (Mbbg1) and (Mbdc2), and then use the velocity triangles and the continuity equation
(Mbdc1) to develop a single differential equation for vm2(n). Assuming that the inlet is free of swirl, and
that vm1 is a constant, this equation for vm2(n) can then be integrated to obtain the velocity and pressure
distributions over the exit. It remains to evaluate the total energy added to the flow by summing the
energies added to each of the streamtubes according to equation (Mbbc9):
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Nondimensionalizing the result, we finally obtain the following analytical expression for the performance:

ψ = Σ1 + Σ2φ2 + Σ3/φ2 (Mbdc4)

where Σ1,Σ2, and Σ3 are geometric quantities defined by
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Σ1 = −Σ3 cot βbT 2 −Σ2 tanβbT 2 (Mbdc5)

where Γ and Γ∗ are given by
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; Γ∗ = 1 − Γcos2 βbT 2 (Mbdc6)



Figure 1: Non-cavitating performance of 9◦ helical inducers of two different sizes and with and without swept leading edges
(the 7.58 cm inducers are Impellers III and V). Also shown is the theoretical performance prediction in the absence of losses
(from Ng and Brennen 1978).

Figure 2: Non-cavitating performance of Impeller IV (7.58 cm, with stator) and Impeller VI (10.2 cm, without stator) at
various rotational speeds. Also shown are full scale test data from Rocketdyne and a theoretical performance prediction
(solid line) (from Ng and Brennen 1978).



Thus the geometric quantities, Σ1, Σ2, and Σ3, are functions only of Γ and βbT 2.
Examples of these analytical performance curves are given in figures 1 and 2 and further comment on

these is included in the section on inducer performance (section (????)).
Note that this idealized hydraulic performance is a function only of the geometric variables, Γ and

βbT 2, of the discharge. Moreover, it is readily shown that in the centrifugal limit of Γ → 0 then Σ1 → 1,
Σ2 → − cot βbT 2, Σ3 → 0, and the earlier result of equation (Mbbg4) is recovered.

It is of interest to explore some optimizations based on the hydraulic performance, given by equation
(Mbdc4). Though the arguments presented here are quite heuristic, the results are interesting. We begin
with the observation that two particular geometric factors are important in determining the viscous losses
in many internal flows. If the cross-sectional area of the flow increases at more than a marginal rate, the
deceleration-induced boundary layer separation and turbulence can lead to large viscous losses that might
not otherwise occur. Consequently, the mean value of w2/w1 is an important design parameter, as implied
earlier in section (Mbcd). In the present analysis, the mean value of this parameter is given by the area
ratio, Ar∗, where, from geometric considerations,

Ar∗ =
Γsin βbT 2
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2
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(Mbdc7)

We shall also use the ratio, Ar, of the area of the axisymmetric discharge surface to the area of the inlet
surface given by

Ar = Γ/ cos ϑ (RT 1/RT 2)
2 (Mbdc8)

In this example it is assumed that RH1 = 0; non-zero values can readily be accommodated, but do not
alter the qualitative nature of the results obtained.

Many centrifugal pumps are designed with Ar∗ values somewhat greater than unity because the flow
must subsequently be decelerated in the diffuser and volute, and smaller values of Ar∗ would imply larger
diffusion losses in those nonrotating components. But, from the point of view of minimizing losses in the
impeller alone, one justifiable optimization would require Ar∗ ≈ 1.

The second geometric factor that can influence the magnitude of the viscous losses in an internal flow
is the amount of turning imposed on the flow. In the present analysis, we shall make use of an angle, ε,
describing the “angle of turn” of the flow as it proceeds through the turbomachine. It is defined as the
angle of the discharge relative velocity vector to the conical discharge surface minus the angle of the inlet
relative velocity vector to the inlet surface:

ε = βbT 2 − tan−1 {φ2ArRT 2/RT 1} (Mbdc9)

Note that, in purely axial flow, the angle of turn, ε, is zero for the case of a flow with zero incidence
through a set of helical blades of constant pitch. Also note that, in purely radial flow, the angle of turn, ε,
is zero for the case of a flow with zero incidence through a set of logarithmic spiral blades. Therefore, using
somewhat heuristic interpolation, one might argue that ε may be useful in the general case to describe the
degree of turning applied to the flow by a combination of a nonzero incidence at inlet and the curvature
of the blade passages.

For the purposes of this example, we now postulate that the major hydraulic losses encountered in the
flow through the pump are minimized when ε is minimized. Let us assume that this minimum value of
ε can be approximated by zero. Referring to this maximum efficiency point of operation as the “design
point” (where conditions are denoted by the suffix, D), it follows from equation (Mbdc9) that
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(Mbdc10)

and hence that
ψD = Σ1 + Σ2φ2D + Σ3/φ2D (Mbdc11)



Figure 3: Comparison of the results of equation (Mbdc12) with the conventional recommendation from figure 1, section
(Mbbe) for the optimum ratio of inlet to discharge tip radius as a function of design specific speed, ND.

Figure 4: Comparison of the results of equations (Mbdc12) with the conventional recommendation of figure 1, section (Mbbe),
for the head coefficient, ψD , and the flow coefficient, φD, as functions of the design specific speed, ND .
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and is a function only of the geometric quantities RT 1/RT 2, RH1/RT 1, RH2/RT 2, ϑ, and βbT 2.
Examine now the variation of ND with these geometric variables, as manifest by equation (Mbdc12),

bearing in mind that the practical design problem involves the reverse procedure of choosing the geometry
best suited to a known specific speed. The number of geometric variables will be reduced to four by
assuming RH1 = 0. Note also that, at the design point given by equation (Mbdc10), it follows that
Ar∗ = Ar and it is more convenient to use this area ratio in place of the variable RH2/RT 2. Thus we
consider the variations of ND with ϑ, βbT 2, RT 1/RT 2, and Ar∗.

Calculations of ND from equation (Mbdc12) show that, for specific speeds less than unity, for sensible
values of Ar∗ of the order of unity, and for blade angles βbT 2 which are less than about 70◦ (which is the
case in well-designed pumps), the results are virtually independent of the angle ϑ, a feature that simplifies
the parametric variations in the results. For convenience, we choose an arbitrary value of ϑ = 50◦. Then
typical results for Ar∗ = 1.0 are presented in figure 3, which shows the “optimum” RT 1/RT 2 for various
design specific speeds, ND, at various discharge blade angles, βbT 2. Considering the heuristic nature of
some of the assumptions that were used in this optimization, the agreement between the results and the
conventional recommendation (reproduced from figure 1, section (Mbbe)) is remarkable. It suggests that
the evolution of pump designs has been driven by processes minimizing the viscous losses, and that this
minimization involves the optimization of some simple geometric variables. The values of ψD and φD, that
correspond to the results of figure 3, are plotted in figure 4. Again, the comparison of the traditional
expectation and the present analysis is good, except perhaps at low specific speeds where the discrepancy
may be due to the large values of Ar∗ which are used in practice. Finally, we observe that one can construct
sets of curves, such as those of figure 3, for other values of the area ratio, Ar∗. However, for reasonable
values of βbT 2 like 20◦, the curves for 0.8 < Ar∗ < 2.0 do not differ greatly from those for Ar∗ = 1.0.

The foregoing analysis is intended only as an example of the application of the radial equilibrium
methodology, and the postscript is included because of the interesting results it produces. Clearly some of
the assumptions in the postscript are approximate, and would be inappropriate in any accurate analysis
of the viscous losses.


