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Experimental Verification of Cavity -flow Wall Effects 

and Correction Rules 

Abstract 

This report  i s  intended a s  a companion to Report No. E-I  I I A .  5, 

"Wall Effects in Cavity FlowsTt, by W u ,  Whitney and Lin. Some simple 

rules for the correction of wall effect a r e  derived from that theoretical 

study. Experiments designed to complement the theory and to inspect 

the validity of the correction rules were then carried out in the high-speed 

water tunnel of the Hydrodynamics Laboratory , California Institute of 

Technology. The measurements on a ser ies  of fully cavitating wedges a t  

zero  angle of attack suggested that of the theoretical models that due to 

Kiabouchinsky is superior.  They also confirmed the accuracy of the 

correction rule derived using that model and based on a measurement of 

the minimum pressure  along the tunnel wall. 



I ,  Introduction 

Wu, Whitney and Lin (1 969) presented exact solutions for fully 

cavitating flows in solid wall tunnels. In particular they computed the 

non-lifting case  of a wedge (half vertex angle, P IT, base width, I ) 

centered in a s t r  earn limited by straight walls, h apart.  Having explored 

the choked flow conditions in which the cavity i s  infinitely long and the 

cavitation number, a ,  takes i t s  minimum possible value, o they then c ' 
t reated the general  case  of finite cavities and came to the following basic 

conclusions on the influence of the wall upon the drag on the headform: 

(i) The drag i s  always lower than that in  unbounded flow 

a t  the same cavitation number, o. The difference i s  

te rmed the drag reduction. It i s  due to the somewhat 

increased velocity, decreased p ressure  coefficient, C 
P ' 

over the wetted surface  of the body though the end 

points, C = I at stagnation, C = -a at  separation 
P P 

a r e  identical. 

(ii) At the same a and X = L / h  the percentage drag 

reduction increases  with decreasing wedge angle, imply- 

ing that the wall effect i s  more  significant for thinner 

bodies in cavity flows. 

(iii) The drag reduction i s  almost insensitive to a fo r  a 

given wedge angle, P , and h = I / h. 

These effects were found with both the open-wake and Riabouchinsky 

theoretical models. Effects (i) and (iii) were also found for the re-entrant 

jet model for a flat  plate [ p : &), although numerical resul ts  for other 

wedge angles a r e  a s  yet  unavailable. A review of the previous theoretical 

work i s  included in Wu, Whitney, Lin (1969) and will not be repeated here .  

Morgan (1 946) reviews recent experimental studies of the wall effect in 

cavity flows. Investigations of "flow chokingr and wall effect in nominally 

axisymmetric flow have been reported by B a r r  (1 966), Dobay (1 967) and 

Brennen (1  969b) among others .  Brennen also finds numerical solutions 

to the theoretical Riabouchinsky flows around a sphere and a disc and 

these furnish theoretical predictions of the wall effect in axisymmetric 

flow. 



In an.other experimental endeavor, Meijer (1 967 ) carried out a 

study of the wall effect upon a cavitating hydrofoil with flaps (nominally 

planar flow). He suggests an empirical method to correct  for the influence 

of the walls. .This involves the use of the minimum pressure on the tunnel 

wall, g+, , and the corresponding velocity, V, as  reference rather than 

the tunnel "free stream" pressure and velocity, pa and U.  The usual 

cavitation n~lrnber, U, and drag coefficient a r e  

where pc is  the cavity pressure,  D the drag on the body, p the density 

of the liquid and S the span. Meijer's corrected aIf, C; a re  thus 

Meij e r  found that this provided a satisfactory wall correction rule 

for  his experiments. The correction rules suggested in this 

report  a re  similarly based on a measurement of the minimum 

pressure  p However both the theoretical predictions of Wu, Whitney b' 
and Lin and the present experimental results indicate that ~Meijer 's rule 

generally over-corrects by an amount which can be quite large. 

I t  i s  of interest to point out the different trends between the wall 

effects in non-separ ated, non-cavitating flows and those in cavity flows. 

In closed wind-tunnels , the lateral  constraint and body thickness general- 

ly result  in an increase of flow velocity and hence dynamic pressure ,  

thus increasing lift, drag, and moment coefficients at a given angle of 

attack ( see ,  e .  g. , Pope (1 954) ). In contrast, the general trend of the 

wall effect on cavity flows in closed tunnels have been found to decrease 

the drag and lift coefficients a t  prescribed cavitation number and in- 

cidence. These opposite trends may seem at f i r s t  glance puzzling, 

particularly to those experienced with wind-tunnel testings . Actually, 

the lateral  constraint in the presence of a cavity still  results in an in- 

crease  of flow velocity and hence a decrease of the pressure  over the 

wetted surface of the body, consequently decreasing all the forces - if 

referred to the same cavitation number. Furthermore, this increase in 

flow velocity a t  the cavity boundary will cause the cavity pressure p 
C 



to be somewhat lower, and hence the cavitation number somewhat higher 

than in an unbounded flow with the same f ree  s t ream condition. These 

two effects therefore reinforce each other such that the curve of drag co- 

efficient, CD, 
against o lies below the corresponding curve for un- 

bounded flow. 

The f i r s t  concern of the present report  i s  the derivation of some 

simple rules for the correction of cavity wall effect. The second i s  the 

experimental verification of these rules and of the theoretical analyses 

of Wu, Whitney and Lin. However, at the same time the opportunity i s  

taken to discuss some of the other problems and r ea l  fluid effects which 

a r i se  during cavitation experiments in high speed water tunnels. These 

may be generally grouped as  follows: 

(i) Viscous effects due to the boundary layer on the 

modal being tested. 

(ii) 'Viscous and other effects due to the boundary 

layer on the tunnel walls including production of a 

longitudinal pressure  gradient and acceleration and 

the possible appearance of secondary flows. 

(iii) The necessity of determining the cavity pressure ,  

'effects which cause this to differ from p the 
PC, V' 
vapo:r pre  s sure  . 

(iv) The determination of a hypothetical "free stream" 

pressure,  pa, equal to the remote pressure  were the 

tunnel infinitely long. 

(v) Limitations on the range of cavitation number which 

can be satisfactorily covered including the effects of 

"flow choking. 

(vi) Effects due to actual cavity closure. These include 

the unsteady, turbulent nature of the flow in this region, 

the cavity filling effect of the r e  -entr ant jet (especially 

when this impinges on the r ea r  of the headform) and the 

viscous, turbulent wake behind the cavity. 

Some discussion on these i s  included a t  the appropriate point in the sections 



which follow. 

2. Wall Correction Formulae 

In view of the fact that the ratio X = L / h  i s  usually small in experi- 

mental practice, an asymptotic representation, for X small, of the exact 

solutions of 'Nu, Whitney, Lin (1969) can serve useful purposes for evaluat- 

ing the wall effects and their corrections. The analysis of the asymptotic 

expansions i s  less  complicated for symmetric wedges and will be carried 

out for two different flow models. 

For  the reader ' s  convenience, expressions utilized in the deriva- 

tions will be reproduced from Wu, Whitney, Lin (1 969). 

A. The Open-Wake Model 

For  t 'his  model, the drag coefficient i s  given by 

where 

i s  the upstream velocity and V i s  the downstream velocity. The cavity 

wall velocity has been normalized to unity. V depends on a and X 

through the implicit relation 

where 

and 

In ( 6 )  and (711, P e r r  is the half -angle of the wedge. 

For  fixed a (hence U) ,  the unbounded flow limit ( X  =0)  of the 

drag coefficient i s  found by letting V -+ U in (3 )  and (5), giving upon 

using llHospitol's rule 



If this equation is  solved for F1(U),  and integrated from U to V, 

an alternate expression for A is obtained, using again (5) 

-2 
where U(U)  5 u - 1. For  a given wedge angle, (8) determines V 

implicitly as a function of u and A . 
We next seek a partial differential equation for CD(a, A ). Part ia l  

diiferentiatiun of ( 3 j  and ( 8  j with respect to u and 'h and elimination of 

t e rms  involving V gives 

In the limit as  h + 0, this equation becomes 

or to the order of accuracy, O(h),  we also have 

For  fixed a ,  ( 1 0 )  gives an estimate of the dependence of C on 
D 

X , namely i3Cdah  ; however, both C and BC / ao must be known. 
D D 

For experimental applications, the latter quantity would require e s timat - 
ing a derivative f rom experimental data, which can be rather inaccurate. 

A more useful result follows by integrating ( I  0) from a to a! < a ,  

corresponding to A = O(u -D' = O(h  ) ), along the mathematical characteristics 



and yields 

where 

This Vwo-way correct ion rule takes a measured drag coefficient 

CD(ulA), in a tunnel of known A ,  and converts i t  by (11) and (12) to an 

estimated drag coefficient C ( o ' ,  0) in unbounded flow ( A  =0) a t  a dif- D 
ferent  cavitation number, cr', given by (12). An example of the use of 

this rule in e~itimating unbounded drag coefficients f rom theoretically 

calculated dat,a, CD(o, A ), i s  shown in Fig. 1 for n = 15 "  . The agree - 
ment of predimcted est imates with calculated values of C (o', 0) i s  found 

D 
to be excellent for  all  angles, with h up to 1 / 6  and a up to 1 .  

Another interesting consequence of Eq. (6)  i s  that estimates of 

C (a, X ) can be obtained if good approximations of C,,(CJ, 0) a r e  known. D 
F o r  example, for wedges with PIT > 30' it i s  known that 

CD(a,O)= Co(P) ( IW)  i s  a fair ly good approximation a s  long a s  o < I .  

Substituting this approximation for CD(u, 0 )  into ( 8 ) ,  we have 

so that 

by ( 3 ) .  Thus, there i s  no correction for wall effect if C (a, 0)  obeys the 
D 

linear relatio:? exactly and i t  i s  reasonable to expect that the correction 

i s  small  if C (a ,  0) follows it only approximately. This i s  confirmed by D 
numerical calculations. 

Another important case occurs for  smal l  angle wedges (P .rr < 15") 

and u fairly large,  in which case 

is a good approximation (see Figs. 7,8,9, Wu, Whitney, Lin (1969) ). In 



this case, we find 

which is in excellent agreeme nt with numerical evaluations of the exact 

equations ( 3 )  - (7). 

B . The Riabouchinsky Model 

For  t:his model, Wu,  Whitney, Lin (1969) give 

and 

where 

I (a ,  b )  = * 1 
d5 . 

(5' +a2)(g2 tbz jZ 

The parameters,  a and b, a r e  related to the upstream velocity, U ,  

and the maximum wall velocity, V ,  by (7 )  and 

respectively. In order to examine the rate-of -change of b as  the 

'tunnel spacing-ratio' A i s  varied, and the role played by the minimum 

pressure p and the maximum velocity V on the wall, as  was once b 
investigated by Meijer (1 967) (see  Eq. (2)  ), we also introduce a new 

cavitation number a1I based on pb and V as 

where a ( U )  gives the conventional cavitation number 



The unbounded-flow limit X = 0 is reached as  b + a, which implies 

V + U and a'" *a. In order to estimate G for small X , we expand D 
C (a, A ) given by (13) in Taylor ser ies  for 1 or! - a I << I ,  
D 

Since the functional dependence of a" on b is the same as that of a on 

a (see (7), (161, (I7), (18) ), we have 

Furthermore,  from (1 5 ) i t  immediately follows 

Combining these results,  we have 

Upon substituting (20) in  (19), the resulting equation can evidently be 

written as  

where 

and a" is given by (1 7). which can either be calculated from (14) 

and (16) or  be obtained by actual measurement in experiments. 

This correction rule has also been used to compare corrected 

estimates of CD(at ,  0) with the numerical results of the exact 



solution C,,(o, 0); the agreement i s  again excellent for wedges of all  

angles with X € 1/6 ,  o < 1,  An example is shown in Fig. 1 for P T  = 15O. 

Its application in experiments will be discussed in Sect. 5. 

I t  i s  noteworthy that (21) is identical to (11); only a' i s  different 

in these two theoretically derived wall-correction rules.  To this end, we 

note that o' in (1 2) i s  known once CJ, X , and CD(a, X ) a re  measured, 

whereas in  (i!2), (1 7), ail requires an additional measurement of either 

Another point worthy of note i s  that although the significance of 

(J" has been explored ear l ier  by Meijer (1 967), i ts  use in Meijer 's em-  

pirical rule leads to an over -correction of the wall effect on drag coefficient. 

This i s  indic.ated in Fig. 1 fo r  P a = 15O. This i s  because in Meijer's 

rule, a" takes the place of o '  , instead of a weighted contribution as  

given by (22).  

In the choked flow limit, V * l and o w  + 0 and (22)  becomes 

so that (21 ) is 

C D ( ~ Y h )  - c ~ ( $ ~ , ~ )  
- 

lta (23)  I + $ 0  

This- equation gives the choked ffow dr ag-coefficient if the unbounded drag 

coefficient as  a function of a i s  known, or  visa versa.  -4s an example of 

the use of (23) we estimate the choked flow C for f3 a = 15" in Fig. I D 
and compare this with the computed value. 

Finaliy, we observe that in these two sets  of wall correction rules 

the body confi.guration has become implicitly absorbed in the drag coefficient 

as one of i ts  argument (i. e. C (a, X ;p ) ). In view of the result  that these D 
correction rules a r e  extremely accurate over the entire range of 

p ( 0  < p < I ), i t  i s  reasonable to expect that they a r e  also valid for bodies 

of arbitrary shape, a t  least  for those with not too great  curvatures of 

their surface profiles. 

3 .  Experimental Arrangements 

Four wedges of vertex angle 2P a = 7*", 9 " ,  15" and 30" (chord 

6 in. ) were tested in the high speed water tunnel at  the California 



Institute of Technology, utilizing the 6 in. span, two dimensional work- 

ing sectioii (Kiceniuk (1 964) ) whose normal height i s  30 inches. However 

by fitting the tunnel with inserts  the 9' and 30" wedges were also run 

with a wall spacing of 13.45 in. (see Fig. 2 ) .  The models were supported 

in the center of the tunnel on a three component force balance for direct 

measurement of total drag. At the conclusion of each set of experiments 

the total drag forces on the fairing plate and wedge supports were measur-  

ed by replacing that plate by a blank, supporting the wedge in the same 

position but fastened to the opposite side-wall and measuring the drag 

registered under conditions identical to those of the main experiments. 

Subtracting this t a r e  drag f rom the original drag reading yielded a mea- 

sure of the force on the wedge alone. 

A working section reference pressure ,  
PT' 

was measured a t  a 

point in the center of the side -wall about 7 in. upstream of the leading 

edge of the model using a water/mercury/air  manometer (see next section). 

The hypothetical 'free stream' velocity in the working section, U ,  was 

inferred from the difference between p and the pressure upstream of 
T 

the convergent section. A ser ies  of static pressure  taps on the lower 

wall (see  Fig. 2 )  were connected to an inverted water manometer refer-  

enced to p for  the purpose of determining the wall pressure distribu- 
T 

tion. Since some differences were observed even with no model instal- 

led in  the tunnel, values more  representative of the effect of the model 

were obtained by using these "clear tunnel" readings as  datum. 

All four wedges i~icluded a base pressure  tapping used to measure 

cavity pressure ,  pc, the technique employed being a familiar one 

(Brennen (1 969a) ). The pressure line i s  connected through a two way 

push pull valve to an a i r  supply adjusted so that the air flow keeps the 

line f r ee  of liquid. Activating the valve cut off this supply and connect- 

ed in an a i r /mercury/water  manometer from which, following an 

interval of a few seconds, the difference (p -p ) could be obtained. 
T c 

Two of the wedges, the 9" and 30°, were built up from the basic 

model used by Meijer (1 967) in order to utilize the static pressure tubes 

distributed along one face of that model. Fifteen of these were connected 

to a water/mercury manometer board referred to p in order to obtain 
T 

wetted surface pressure distributions; bleeding of these lines before every 



reading was required to obtain reliable data. 

For  each model configuration data was obtained over a ser ies  of 

cavitation numbers, a ,  a t  a few selected velocities, U. However, apart 

from the limit imposed by flow choking (i. e.  a > a=), there were certain 

other physical limitations upon the range of o which could be safely and 

satisfactorily covered a t  a particular velocity. At higher velocities (35 

to 50 f t /  sec depending on model size)  readings could be obtained only up 

to a certain o, for above this either the drag exceed that measurable 

by the balance (120 Ibs) or the vibration of the  whole structure became 

excessive. At lower velocities (25  to 40 f t f s ec  depending on model size)  

a minimum (3 was usually imposed by the fact  that an excessive number 

of vapor/air bvbbles appeared in the pressure lines when p was less 
T 

than about 0.45 ft. of mercury. In the case of the reduced tunnel, vibration 

ef the inserts and n c c i l l a t i c ? ~  of the flow arm-lnd them was an added hazard. 

In general, however, an acceptable range of a could be obtained by com- 

bining the results a t  two velocities, one in the higher range, the other in 

the lower. 

4. Experimental Results 

A recurring problem in water 

mining a hypothetical, "free s t r  eam" 

tunnel experiments ar ises  in deter - 
pressure  corresponding to the remote 

pressure,  rho of potential flow calculations which assume the working 

section to be infinitely long. In a tunnel of constant section a favorable 

longitudinal pressure gradient is produced b y  boundary l ayer  growth on  

the walls. In the present tunnel this could be overcome by flairing the 

side walls (Kiceniuk (1 964) ). Then the longitudinal pressure gradient 

i s  given roughly by 

where h D  is some m e a n  

i s  the centerline distance 

Under normal operational 

probably turbulent so that 

boundary l a y e r  displacement thickness, x 

and S ( x )  is  the span or  tunnel width. 

conditions the boundary layer i s  

86 /ax may be given by 0 . 0 3 8 ( v / x ~ )  1/5 
D 



though the effective origin of x is  difficult to estimate. However both the 

experiments of Kiceniuk (1964) and the above formula when, say, x '15 is 

of order 1 ft1I5 and U is between 30 and 50 f t /  sec indicate that 8C /ax 
P 

i s  roughly zero when aS/ax is about 0. 003. Thus the flair i s  se t  at this 

value. Nevertheless since pressures  a r e  to be measured on the model 

itself it seems wise to locate the reference pressure tap as  close to the 

model as possible, yet fa r  enough away for the influence of the pressure 

field around the model to be negligible. The choice of a tap 7 in. from 

the leading edge of the model (see Fig. 2 )  involved such compromises. 

Theoretical estimates indicated that the pressure field influence was less 

than AC = 0. 01 at  that point. Further upstream the influence of the 
P 

tunnel convergent section is  felt;  for example 6 in. further upstream, C 
P 

was of the order of 0.03 higher. 

I t  will be seen that of the theoretical models that of Riabouchinsky 

yields results  closest to the experimental measurements. To avoid con- 

fusion by profusion comparison i s  made in most of the figures only with 

that model, whilst comments on the other model will be included in the 

text. Typical pressure  distributions on the faces of the 9 O  and 30" wedges 

a r e  shown in Figs. 3 ,4 ,5  where s i s  measured along the wetted surface 

f rom the leading edge and s = C at  separation. These agree quite well 

with the theory though two deviations a r e  noteworthy: (i) the lower experi- 

mental C close to the leading edge a r e  probably due to a slight down- 
P 

ward inclination of the incident s t ream since small negative lifts were 

also registered by the balance; (ii) near the trailing edge the experi- 

mental C a r e  slightly above the theory, especially when the flow i s  
P 

close to being choked. This second effect may be partly due to the 

presence of smal l  airlvapor bubbles in the tubes registering these low 

pressures  though there may also be some contribution from the complex 

boundary layer flow near separation. 

The coefficients of drag a r e  plotted in Figs. 6 and 7. Graphic 

integration of the experimental pressure distributions yields results in 

excellent agreement with the Riabouchinsky model theory. The direct 

measurements,  corrected for t a re  drag, showed a greater  scatter and 

the compa.rison i s  poorer. An estimate of the skin friction component 

of this total drag was obtained using the Faulkner Skan solutions for the 



boundary layer flow near the leading edge of a wedge. Then 

2J2(n+1) A4 2 
W,) = . f 1 l ( ~ ) l & 1  

Viscous 

where n = (3 / . ( l -p  ), A represents the strength of the leading edge singular- 

itywhich i s  estimated f rom the value of ( I  -C ) near that point and 
P I d  

takes a value of about unity. In the conventional notation, fH(0) i s  a 

known function of (3 available in tables of Faulkner Skan solutions. The 

work of Ackerberg (1970) would indicate that the contribution of the rapid- 

ly accelerating flow near the trailing edge i s  small in comparison. Equa- 

tion (25)  yields respective values of 0.012 and 0.006 for the 9" and 30" 

wedge experiments and these a r e  included in  the figures, with, a s  can be 

seen, mixed results.  

The more  reliable data, namely the pressure  integrated drag co- 
m:nnC.-.  ,,.-1,4 n 1,- L A  mn--,,,;I . v A t h  tLn ,,n.- l+m n C  +h n n-an -.~,-1,n 

. , L & A b r L C l l l r U  C I V C C I U  LI.IUV C J b  CI"lllpLI.& C U  V I A L I I  I.&&+ I C U U I C U  "I L l l b  " y C . I I  V" ca.l.\r 

theoretical model. However it i s  clear f rom the agreement with the 

Riabouchinsky model and the difference between the two theoretical 

models (Wu, Whitney and Lin (1  969) ) that the experimental values will 

lie significantly below the open-wake theory except close to the choked 

condition where the theories virtually coincide in any case.  The differ - 
ence would be especially marked for small l / h  at moderate to high 0. 

Comparison could also be made with the results of the linearized theory 

of Cohen and Gilbert (1957). As expected the linearized theory yields 

values of CD substantially greater  than either the exact theory or the 

experiments. This i s  exemplified in Fig. 1 where i t  i s  seen that the 

linearized theoretical choked flow line i s  actually above the unbounded 

flow line for a 30' wedge. The difference i s  less  for wedges of smaller 

P -IT- 

Sample wall pr e S sure  distributions, referenced to clear tunnel 

values a s  mentioned in the last  section, a r e  presented in Fig. 8 for the 

case of the 9" wedge. Note that the cavity wake causes the experimental 

curves to asymptote to a non-zero C downstream of the cavity. Thus 
P 

the actual curves correspond to a compromise on the Riabouchinsky model 

theory in the direction of the open-wake model (the curves for  which 

a r e  not shown but decrease monotonically toward a value C = -0). This 
P 



deviation clearly causes a slight reduction of the minimum wall pre s sur e 

below the Riabouchinsky model value. This occurred consistently as  can 

be seen from Fig. 9 where the minimum wall pressures  for al l  model 

configurations a r e  plotted against a. Nevertheless the agreement with 

theory i s  satisfactory. 

The pressure-integrated drag on the 9" and 30" wedges a r e  cor-  

rected for wall effect using the relations (21 ), (22)  and the experimental 

values of minimum wall pressure. The results  a r e  shown with the 

original points and the theoretical Riabouchinsky curves in Figs. 1 0  and 

1 I .  Clearly the results a r e  very satisfactory since the rule collapses 

the points for different I /h onto a single line very close to the unbounded 

theoretical line. The only noticeable deviation i s  a t  low o where the 

experimental points lie somewhat above that theoretical curve. 

5. Concluding Remarks 

The two basic conclusions to be drawn from the present work a re  

a s  follows: 

(1) The experimental results agree very well with the 

theory which employs the Riabouchinsky model. Agree- 

ment with other models i s  less good. 

(2) The rules for the correction of wall effect which a re  

based on the Riabouchinsky model and use the value of 

the minimum pressure on the tunnel wall a r e  found to be 

eminently satisfactory. They may indeed be applicable 

to a much wider variety of cavitating flow. 
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Figure 1 - Correction Rules Checked Against Theoretical Results  for  30' Wedge 
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Figure 2 - Diagram of Experimental Arrangement. 



9" WEDGE. I/  h = 0.0324 

" EXPT. POINTS THEORY 
( RIABOUCH I NSKY MODEL) 

a 0.159 0 ut0.16 A 
. ~ 8 0 , 2 6 7  x ~ 3 0 . 3  8 

a 8 0.585 0 a80.6 C 

Figure 3 - Pressure Distribution on 9' Wedge in Normal Tunnel. 
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Figure 4 - Pressure Distributions on 9* Wedge in the Reduced Tunnel. 
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Figure 5 - Pressure Distributions on 30' Wedge. 
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Figure 6 - Drag of 9' Wedge. 
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Figure 7 - Drag of 30" Wedge. 
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Figure 8 - Sample W a l l  Pressure Distributions for 28 = 9*, l /h = 0.0324. 
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Figure 9 - Minimum W a l l  Pressure Versus Cavitation Number. 
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