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We propose a new reduced-order model for spherical bubble dynamics that accurately captures the
effects of heat and mass diffusion. The objective is to reduce the full system of partial differential
equations to a set of coupled ordinary differential equations that are efficient enough to implement
into complex bubbly flow computations. Comparisons to computations of the full partial differential
equations and of other reduced-order models are used to validate the model and establish its range
of validity. © 2007 American Institute of Physics. �DOI: 10.1063/1.2825018�

I. INTRODUCTION

Some common assumptions �such as polytropic
compression/expansion, constant vapor pressure, and effec-
tive liquid viscosity� made in modeling the heat- and mass-
transfer processes involved in spherical bubble dynamics do
not accurately capture those processes.1–4 The alternative is
to solve the full set of coupled radial transport equations for
each bubble, but this is too computationally intensive to
implement in continuum models of complex bubbly flows.
Consequently, reduced-order models that accurately capture
diffusive effects are needed. Previous reduced-order models
that account for thermal diffusive effects are discussed in
detail in the text, and the results are compared with the
model proposed herein.

As a benchmark to evaluate the reduced-order models,
we numerically solve the full set of partial differential equa-
tions �PDE� for a spherical gas-vapor bubble, including heat
and mass transfer in both the gas and liquid phases. Addi-
tional approximations are then used to reduce the full set of
PDE from six to two; one each for the temperature and vapor
concentration fields in the bubble interior. This reduced set of
equations is then solved numerically for a wide range of
parameters. Proper orthogonal decomposition �POD� is ap-
plied to the data in order to determine suitably averaged tem-
perature and concentration fields. These fields suggest the
adoption in the reduced order models of constant heat and
mass transfer coefficients at the bubble wall. We show that
the resulting model accurately captures diffusive effects by
solving the Rayleigh–Plesset equation �RPE� coupled with
two ordinary differential equations �ODEs�. Analyses of the
model equations for the case of small-amplitude oscillations
and the case of the low Peclet number limit are also
presented.

II. FULL SPHERICAL BUBBLE MODEL

We begin by delineating the complete set of PDEs that
include heat and mass transfer in the gas within and the
liquid outside a spherical gas-vapor bubble. Several assump-
tions are made at the outset: �i� The liquid is incompressible;
�ii� the gas-vapor mixture is a perfect gas; �iii� Fourier’s law
for heat conduction in liquid and gas; �iv� Fick’s law of mass

diffusion for the noncondensible gas in the liquid and for the
interdiffusion of vapor and gas inside the bubble; �v� con-
stant transport properties, liquid density, and surface tension;
�vi� constant transport properties for the gas; �vii� thermal
equilibrium at the gas-liquid interface; and �viii� Henry’s law
at the gas-liquid interface. We note that there are alternatives
to some of these assumptions, for example the first-order
correction for liquid compressibility5 and van der Waals
equation of state for the gas.6 However, we neglect these
higher-order effects, since the focus of this paper is on mod-
eling the impact of heat and mass transfer on bubble dynam-
ics, rather than all possible competing effects. Further dis-
cussion and validation of these assumptions, under a range of
conditions, are available in Ref. 7.

The resulting set of equations consists of a modified
Rayleigh–Plesset equation �RPE� for the motion of the liq-
uid, and transport equations that include heat and mass dif-
fusion in the bubble interior. These are coupled to the trans-
fer of heat and dissolved gas in the liquid phase through the
interface conditions at the bubble wall. We refer the reader to
Preston7 for a listing of these equations and their provenance.
Following Hao and Prosperetti,8 we use a Chebychev spec-
tral collocation method with an adaptable number of modes
in the gas and liquid domains to spatially discretize the full
set of equations. A fourth-order Runge–Kutta scheme is used
for time integration. Demonstration of spectral convergence
and further details related to the numerical method are given
in Ref. 7.

In order to simplify the analysis and data reduction, it is
helpful to work with nondimensional variables. In the fol-
lowing, the bubble radius, R=R* /R0

*, pressure, p= P / P0, and
temperature, T=T /T0, are nondimensionalized by their initial
�equilibrium� values denoted by the subscript 0, while the
concentration, C=�V / ��V+�A�, is the mass fraction of vapor.
Here, the subscripts L, V, and A denote, respectively, liquid,
vapor, and noncondensible gas. The nondimensional time, t,
is defined using the isothermal bubble natural frequency, �0.

Inserting these and other �see Sec. III A� nondimensional
variables into the full bubble equations yields five nondimen-
sional parameters: Reynolds, Weber, and Euler numbers and
two Peclet numbers for thermal and mass diffusivity,
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Re = R0
*2�0/�L, We = �LR0

*3�0
2/S,

Eu = P0/�L�R0
*�0�2, PeT = �GVcpR0

*2�0/KGV, and

PeG = R0
*2�0/D ,

where �GV, cp, and KGV are the density, specific heat, and
thermal conductivity of the gas-vapor mixture, D is the dif-
fusivity of the initial gas-vapor mixture, and S is the surface
tension �D and S are assumed constant�. The nondimensional
vapor saturation pressure is defined as pvsat= Pvsat / P0, and for
the full bubble computations of this section is a function of
the temperature at the bubble wall �see Ref. 7�. However, in
Sec. III, the bubble wall temperature is fixed and the nondi-
mensional vapor saturation pressure is then a constant pa-
rameter. While each of the above nondimensional parameters
must be specified for every computation, it is the Peclet num-
bers that determine the thermal and mass diffusive behavior.

We also note that internal spatially averaged, dimension-
less bubble variables are denoted by an overbar and defined
by

T̄ �
1

V
�

V

TdV = 3�
0

1

T�y�y2dy , �1�

where r is a radial coordinate, y=r /R, V is the bubble vol-
ume, and T has been used as the example.

A. Cases considered and sample calculation

We subject the bubble to a prototypical Gaussian de-
crease of the far-field pressure,

p��t� = p�0„1 − A exp�− ��t − t0�/tw�2�… , �2�

where the dimensionless amplitude, A, and time scale, tw, are
varied over a range of values that mimic conditions encoun-
tered by a bubble advecting through a converging-diverging
nozzle �e.g., Preston et al.9�. Nondimensional parameters for

all cases considered are given in Table I. To aid in the inter-
pretation of the results, a corresponding dimensional equilib-
rium radius and bubble natural frequency are given for each
case for air-vapor bubbles in water at 298 K.

In order to illustrate the complex diffusive processes that
occur in and around the bubble, detailed results are presented
for a typical case corresponding to case E with A=0.985 in
Table I. Figures 1�a� and 1�b� show bubble radius and pres-
sure at the bubble center. They exhibit the typical behavior of
an inertially controlled bubble with strong bubble collapses
leading to small minimum radii and high pressures. Except
for a short time near the minimum radius, the pressure

TABLE I. Dimensionless parameters, equilibrium bubble radius �R0
*�, bubble natural frequency ��0�, and the

various forcing Gaussian widths �tw� and amplitudes �A� for all computations. For convenience of reference, an
example of the dimensional equilibrium radius and bubble natural frequency are quoted for each case for an
air-vapor bubble in water at 298 K and atmospheric pressure. Note that Cases I through L do not contain vapor.

Case
R0

*

��m�
�0

�kHz� PeT PeG Re We Eu pvsat tw A�range�

A 4 4795 5.27 3.17 85.9 20.4 0.374 0.0229 4.79 1.05–1.40

B 4 4795 5.27 3.17 85.9 20.4 0.374 0.0229 47.9 1.00–1.10

C 4 4795 5.27 3.17 85.9 20.4 0.374 0.0229 479 1.03–1.048

D 40 435 36.4 28.8 780 168 0.348 0.0301 4.35 1.10–1.50

E 40 435 36.4 28.8 780 168 0.348 0.0301 43.5 0.95–1.00

F 40 435 36.4 28.8 780 168 0.348 0.0301 435 0.95–0.985

G 400 43.0 349 284 7711 1641 0.344 0.0308 4.30 1.10

H 4000 4.30 3475 2841 77030 16370 0.344 0.0308 0.430 1.00

I 4 4856 4.61 ¯ 87.0 20.9 0.366 ¯ 40.0 1.0

J 40 442 34.8 ¯ 791 172 0.338 ¯ 40.0 1.0

K 10 1827 9.26 ¯ 204 46.2 0.348 ¯ ¯ ¯

L 50 353 42.9 ¯ 987 215 0.336 ¯ ¯ ¯

FIG. 1. �a� Bubble radius, �b� bubble pressure, �c� temperature, and �d�
concentration for a 40 �m air-vapor bubble in 25°C water at atmospheric
pressure �Case E, A=0.985�.
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throughout the bubble is nearly uniform. This result is ex-
ploited in Sec. II B.

Figures 1�c� and 1�d� plot the spatially averaged bubble
temperature and vapor concentration together with their val-
ues at the bubble center �subscript c� and wall �subscript w�.
Changes in the bubble wall temperature are two orders of
magnitude smaller than the average or center temperatures.
This is a result of the liquid being cold, which is exploited in
Sec. II B. The significant differences between the center, av-
erage, and wall values of temperature and concentration in-
dicate substantial spatial gradients within the bubble. In par-

ticular, while Cw becomes small during collapse, C̄ and
especially Cc are well above zero indicating that slow mass
diffusion is trapping vapor in the bubble on collapse.3,10 In
addition, the limiting mass diffusion during initial growth
has the effect of restricting bubble growth �see Sec. IV A�.

Also indicated in Fig. 1 are the maximum radius ob-
tained during the first growth, Rmax, the second maximum
radius obtained on the first rebound, Rrebound, the minimum
radius, Rmin, maximum bubble pressure, pmax, maximum av-

erage bubble temperature, T̄max, and minimum average vapor

concentration, C̄min, all obtained in the first collapse. Some
of these defined quantities will be used to evaluate the accu-
racy of reduced-order models in Sec. IV.

Figure 2 shows the temperature and concentration pro-
files at six times indicated in Fig. 1�a�. Here the radial coor-
dinate has been nondimensionalized by the instantaneous
bubble radius, y�r /R�t�, though the horizontal scale
changes above r /R=1.7 Note that the liquid temperature re-
mains relatively undisturbed. The profiles of the gas tem-
perature are close to quadratic in y for the slow bubble mo-
tion during initial growth in �a� and �b�. During collapse, �d�,
there is clearly some steepening of the temperature profile
near the bubble wall, which suggests a more adiabatic behav-
ior. Shortly after collapse, �e�, the profile is no longer mono-
tonic. In fact, if we define an instantaneous heat-transfer co-
efficient,

�T �
− �T/�y	y=1

T̄ − Tw

, �3�

then �T is negative during part of the cycle. This is more
clearly illustrated in Fig. 3�a�, which plots the temperature

gradient at the bubble wall as a function of �T̄−Tw�. Again
the six instances in time, �a�-�f�, are marked in the plot. Note
that point �e� is in the first quadrant, which implies that
�T�0. In addition, part of the collapse and rebound cycle is
in the third quadrant, where again �T is negative. This coun-
terintuitive result can be predicted by linear theory where it
is caused by a phase lag between the temperature gradient
and average bubble temperature �Sec. III B�. It was first iden-
tified in nonlinear computations by Nigmatulin et al.,11 who
explained that on bubble collapse, the heat from compression
is conducted to the liquid by the large thermal gradient,
while during initial expansion, heat conduction is not able to
compensate for the cooling of the gas wall layers caused by
expansion.

The vapor concentration profiles �Fig. 2� are more com-
plex. This is because the mass diffusion is forced by the
time-varying concentration at the bubble wall, while the ther-

FIG. 2. Temperature and concentration profiles at different times for the
computation of Fig. 1. Note that the horizontal scale changes above
r /R=1.

FIG. 3. Gradients at the bubble wall vs the difference
between the average and wall values for �a� temperature
and �b� concentration for a bubble in a cold liquid. The
computation is for that of Fig. 1.
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mal diffusion is forced by the compression heating term act-
ing �relatively uniformly� over the bubble interior with
nearly constant wall temperature. Nonetheless, there are
close parallels with the temperature profiles, particularly at
instances �a�, �d�, and �e�. Figure 3�b�, which plots the con-

centration gradient at the bubble wall versus C̄−Cw, indi-
cates that at time �e� the instantaneous mass-transfer coeffi-
cient, �C �which is defined analogously to �T�, is negative. In
addition, there is considerable time spent in the third quad-
rant, where �C is also negative. As with the heat transfer, this
phenomenon is caused by the phase lag between the concen-
tration gradient and the average concentration.

Referring again to Fig. 2, the mass concentration of air
in the liquid, CA, decreases near the bubble wall during the
initial expansion ��a� and �b��. This is due to the partial pres-
sure of air in the bubble decreasing as a result of both the
overall bubble expansion and the increased vapor content of
the bubble. Thus air diffuses into the bubble and a layer of
liquid around the bubble is depleted of air. As the bubble
collapses ��c� and �d��, the concentration at the wall increases
rapidly as air is forced out of the bubble. Since collapse
occurs on a time scale that is fast compared to diffusion, the
depletion layer remains in the liquid, but at some distance
from the bubble wall. On bubble rebound ��e��, the concen-
tration at the bubble wall begins to decrease until the situa-
tion in ��f�� is reached, where once again air is diffusing into
the bubble.

B. Additional assumptions

The full computation of the preceding section illustrates
some additional approximations that can be utilized to re-
duce the computational effort in solving the full equations,
and to aid the development of reduced-order models. The
following assumptions are made in the remainder of this pa-
per: �i� The internal bubble pressure is spatially uniform,1,11

�ii� the liquid temperature is uniform,12 �iii� there is no dif-
fusion of noncondensable gas in the liquid,12 and �iv� the
vapor pressure is in equilibrium at the gas-liquid interface.12

Each of these additional assumptions has been validated for
all the cases considered by comparisons with the full com-
putations of the preceding section.7 However, for strongly
forced bubbles �e.g., large A� that have larger bubble growths
and faster collapses than those considered here, the role of
pressure nonuniformities and shock waves in the gas may
become important.13,14

The set of simplified equations resulting from the above
assumptions is given in Sec. III A; at this point, we note that

all of the PDEs for the liquid phase, as well as the continuity
and momentum equations for the gas phase, are eliminated
with these approximations. The equations that remain are
two PDEs for heat and mass transfer in the bubble interior,
and two ODEs for the bubble radius �RPE� and the internal
pressure. It is this simpler set of equations that is solved in
the remainder of this paper. Finally, the reduced-order model
in Sec. III A is based on these same assumptions, but with
additional approximations for the heat and mass transfer that
eliminate the final two PDEs in favor of a single ODE for the
mass of vapor in the bubble.

C. Data set reduction

A well-known method for systematically deriving
reduced-order models for PDEs is to first compute a set of
orthogonal spatial modes using the proper orthogonal de-
composition �POD�, and then perform a Galerkin projection
of the PDE onto a reduced set of the POD modes �e.g.,
Rowley15 and references therein�. The POD modes �or em-
pirical eigenfunctions� are obtained from data �found, for
example, by solving the full PDE as presented in Sec. II A�.
Simply put, given an ensemble of realizations of a field, q�y�
�here either the temperature or concentration field within the
bubble�, we find orthogonal modes, ��k�y��k=1

m , such that the
mean projection of q onto � is maximized. The Galerkin
projection then produces a set of ODEs describing the tem-
poral evolution of the modal �or Fourier� coefficients. To
compute the POD modes, we use the snapshot method de-
veloped by Sirovich.16 The POD computation involves solv-
ing an m-dimensional eigenproblem for the POD modes,
� j�y�, and associated eigenvalues, 	 j. Here m is the number
of equally spaced snapshots used in each POD computation,
and is chosen to be large enough such that additional snap-
shots do not significantly impact the POD results. Each ei-
genvalue represents the portion of the “energy” captured by
the associated POD mode. The success of the POD/Galerkin
approach is not guaranteed in general, and hinges upon a
large fraction of the energy being captured in a few dynami-
cally significant modes.

The parameters that primarily determine the diffusive
behavior in the bubble interior are the respective Peclet num-
bers for heat and mass transfer, PeT and PeG.3 Figure 4
shows the first three POD modes for the temperature fields
�concentration looks similar� for three typical computations
with different values of PeT. For the lowest values of PeT, the
POD modes show significant variation over the entire range
of y, indicating that the diffusion penetration length is of the

FIG. 4. First three mode shapes from
the POD analysis of the temperature
field for different values of PeT as fol-
lows: �a� PeT=5.27 �Case C, A=1.03�;
�b� PeT=349 �Case G, A=1.10�; �c�
PeT=3475 �Case H, A=1.00�.
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same order as, or greater than, the bubble radius. In particu-
lar, the first POD mode is well approximated by a quadratic
in y, which corresponds to the solution of the diffusion equa-
tions in the limit of PeT→0, as demonstrated analytically by
Preston.7 For lower values of PeT, the POD modes remain
essentially unchanged. As PeT is increased, the POD modes
show less variation near the bubble center. Indeed, for
PeT=3475, most variation occurs near the bubble wall,
which indicates the diffusion penetration length is signifi-
cantly smaller than the bubble radius. The manner in which
the POD mode shapes depend on PeT is consistent with the
full computations of Matsumoto and Takemura.3 Here the
POD analysis provides a convenient and concise means of
summarizing such full computations.

Figure 5�a� plots the first five eigenvalues of the tem-
perature modes for different values of PeT and in cases in
which Rmax is approximately constant. The eigenvalues are
placed in descending order and normalized such that they
sum to unity. For low PeT=5.27, the decay in the eigenvalues
with mode number, k, is rapid. As PeT is increased, this de-
cay becomes more gradual. Similarly, Fig. 5�b� plots the first
five eigenvalues of the concentration modes for computa-
tions with different Rmax �found by changing A� and fixed
PeG. Clearly, the rate of decay of the eigenvalues decreases
as Rmax is increased. We can conclude that modeling the
diffusive behavior is likely to be more difficult for large val-
ues of PeT, PeG, and Rmax, since more degrees of freedom
will be needed in the model to capture the additional energy
contained in the higher modes.

Nevertheless, in all cases studied, more than 90% of the
energy is contained in the first POD mode. This leads to the
hypothesis that a reasonable reduced-order model can be
based solely on the first POD mode. One could proceed to
derive the single ODE for the modal coefficient, but this can
be shown7 to be equivalent to using a constant �average�
heat/mass-transfer coefficient associated with the first POD
mode,

� �
− ��1/�y	y=1

�̄1 − �1w

. �4�

Here, �1 denotes the first POD mode, the subscript w de-
notes the value at the bubble wall, and the overbar is the
volume average defined by Eq. �1�. The heat/mass-transfer
coefficient, �, forms the basis for the reduced-order model
developed in the next section.

III. CONSTANT-TRANSFER COEFFICIENT MODEL

Motivated by the POD results of the preceding section,
we use constant transfer coefficients to estimate the heat and
mass flux at the bubble wall.

A. Modeling the fluxes: The basis for the model

We now present the model equations that employ all the
assumptions mentioned in Sec. II. We begin with the RPE,
which results from integrating the momentum equation for
the incompressible liquid,

Eu�p − p��t�� = R
d2R

dt2 +
3

2

dR

dt
�2

+
4

Re

1

R

dR

dt
+

2

WeR
. �5�

Note that the equilibrium of the RPE relates the ambient
pressure and the Euler and Weber numbers, Eu�1− p�0�
=2 /We. The assumption of spatially uniform internal pres-
sure enables the continuity and momentum equations to be
integrated within the bubble interior, resulting in the follow-
ing ODE for the internal bubble pressure:1,11

dp

dt
=

− 3


R

�p

dR

dt
−

1

PeT

1

R
kw

�T

�y
�

y=1
− RVTwṁV� . �6�

Here 
=Cw
V+ �1−Cw�
A is the ratio of specific heats of the
gas-vapor mixture, where 
V=4 /3 and 
A=7 /5 are the ratio
of specific heats of the vapor and gas, respectively. The non-
dimensional thermal conductivity of the gas-vapor mixture at
the bubble wall is kw=CwkV+ �1−Cw�kA, where kV=KV /KGV

and kA=KA /KGV are the nondimensional thermal conductivi-
ties of the vapor and gas, respectively, and KGV is the thermal
conductivity of the initial gas-vapor mixture. The nondimen-
sional perfect gas constant of the vapor, RV, is defined
shortly. The mass flux of vapor into the bubble per unit sur-
face area is nondimensionalized by dividing by �GVR0

*�0 and
then denoted by ṁV. It is determined from reciprocal diffu-
sion as

ṁV = � 1

PeG

p

RTw

1

1 − Cw

1

R

�C

�y
�

y=1

. �7�

Here R=CwRV+ �1−Cw�RA is the nondimensional perfect
gas constant of the gas-vapor mixture at the bubble wall,
RV=RV

* /R0
* and RA=RA

* /R0
* are the nondimensional per-

fect gas constants of the vapor and gas respectively, and R0
*

is the perfect gas constant of the initial gas-vapor mixture. In

FIG. 5. First five normalized eigenvalues from the POD
analysis �a� for different values of the Peclet number,
PeT �Case C, A=1.03; Case E, A=0.95; Case G,
A=1.10; Case H, A=1.00� and �b� for different values
of the maximum bubble radius, Rmax �Case F, A=0.95,
0.97, 0.98, and 0.985�.
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the above equations, the subscript w denotes a variable
evaluated at the bubble wall �y=1�.

To close the set of equations �5�–�7�, we require the con-
centration and temperature gradients at the bubble wall. Mo-
tivated by the POD results of Sec. II C, we model the gradi-
ents at the bubble wall using constant mass and heat-transfer
coefficients, �C and �T, such that

� �C

�y
�

y=1
 − �C�C̄ − Cw� and

�8�

� �T

�y
�

y=1
 − �T�T̄ − Tw� .

Note that the overbar denotes the volume average over the
bubble defined by Eq. �1�. For each computation, the transfer
coefficients will depend on the Peclet numbers �see Fig. 4�. It
remains to determine the temperature and concentration at
the bubble wall, and the volume averages of the temperature
and concentration. Since the variation in the liquid tempera-
ture is neglected, the temperature at the bubble wall is simply
the initial temperature, Tw=T0, while the wall concentration
is determined by assuming the vapor pressure at the bubble
wall to be in equilibrium,

Cw =
1

1 + �
, �9�

� =
RV

RA

 p

pvsat
− 1� . �10�

The average bubble temperature is estimated by applying the
perfect gas law in a volume averaged sense to the bubble
contents,

T̄

T0


p

p0

�0

�̄


p

p0

R3

R0
3

mA0 + mV0

mA0 + mV
, �11�

where mA0 and mV0 are the initial masses of noncondensible
gas and vapor in the bubble nondimensionalized by �GVR0

*3,
and R0= p0=T0=1 has been used for clarity. Results from full
computations indicate that this approximation is extremely
accurate. The nondimensional mass of vapor in the bubble,
mV, is determined by integrating

dmV

dt
= 4�R2ṁV, �12�

where ṁV is given by Eq. �7�. The average vapor concentra-
tion is then given by

C̄ 
mV

mA0 + mV
. �13�

The set of model equations �5�–�13� is now closed provided
we have an estimate for the transfer coefficients. As men-
tioned previously, the transfer coefficients depend on the
Peclet numbers and can be determined from the POD analy-
sis. However, it is preferable for the reduced-order model not
to rely on POD analysis, since, in general, one would not
have access to an appropriate full computation. In the next
section, we appeal to linear analysis to develop a simple

method for determining the transfer coefficients as functions
of Peclet numbers.

B. Linear analysis

The linearized mass and heat diffusion equations for the
bubble interior can be written �see, for example, Prosperetti
et al.1� as

�C�

�t
=

1

PeG

1

y2

�

�y

y2�C�

�y
� , �14�

�T�

�t
=

1

PeT

1

y2

�

�y

y2�T�

�y
� +


 − 1



p�. �15�

Here the primes denote small-amplitude perturbations, such
that C=C0+C�, T=1+T�, p=1+ p�, and C0 is the equilib-
rium vapor concentration. The above PDEs are supplemented
by the symmetry conditions, �C�

�y 	y=0= �T�
�y 	y=0=0, and bound-

ary conditions, C�	y=1=Cw� �t� and T�	y=1=0. The solution to
the linearized system can be written in the frequency domain
as

Ĉ��y,� = Ĉw� ����y,;PeG� , �16�

T̂��y,� =

 − 1



p̂����1 − ��y,;PeT�� , �17�

where the complex linear mode shape ��y , ;Pe� is given
by

��y,;Pe� =
sinh�iPey

y sinh�iPe
. �18�

Differentiating and volume averaging Eqs. �16� and �17�
yields

� �Ĉ�

�y
�

y=1
�� = − ��;PeG�C̄ˆ ��� , �19�

� �T̂�

�y
�

y=1
�� = − ��;PeT�T̄ˆ ��� , �20�

where the transfer function �� ;Pe� is given explicitly as

��;Pe� = ���iPe coth�iPe − 1�−1 −
3

iPe
�−1

. �21�

Since the transfer function depends on , an attempt to trans-
form Eqs. �19� and �20� back into the time domain would
result in a convolution integral, which is of little use for
obtaining estimates for the transfer coefficients, and difficult
to evaluate numerically.

These difficulties are overcome by approximating the
transfer function in the frequency domain, such that Eqs.
�19� and �20� can be inverted analytically without resulting
in a convolution integral. In order to obtain real valued quan-
tities after transforming into the time domain, we require the
following property to hold for the approximation:
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�approx�*;Pe� = �approx
* �;Pe� , �22�

where * denotes the complex conjugate of . In the
constant-transfer model, we simply use the zeroth-order term
of a Taylor series expansion about some characteristic fre-
quency, 0. The use of more sophisticated rational function
approximations is explored in Preston,7 but is ultimately
found to give less accurate results. The characteristic fre-
quency 0 that we choose is the isothermal bubble natural
frequency. Within the present nondimensionalization, this
corresponds to setting =0=1 in Eq. �21�. The appropri-
ateness of the choice of the isothermal bubble natural fre-
quency is discussed further shortly. Equations �19� and �20�
then transform back into the time domain to yield

� �C

�y
�

y=1
= − R���PeG���C̄ − Cw� , �23�

� �T

�y
�

y=1
= − R���PeT���T̄ − Tw� , �24�

where the imaginary part of the transfer function, I���Pe��,
has necessarily been neglected in order to satisfy Eq. �22�. In
the above equations, the frequency-independent transfer
function is defined as ��Pe����1;Pe�, and the linear per-
turbations have been written in terms of the original vari-
ables.

Comparing the above equations to the approximations
�8�, it is apparent that the transfer coefficients are given by

�C � R���PeG�� and �T � R���PeT�� . �25�

These final two equations close the set of model equations
presented in Sec. III A without the need for POD analysis. In
Sec. IV, we will test the reduced-order model by comparison
to full computations.

In the remainder of this section, we comment on some of
the consequences of evaluating the transfer function at a
single frequency and neglecting the imaginary part of the
transfer function. Figure 6 plots the real part, �, and phase, �,
of the transfer function as the Peclet number is varied over
many orders of magnitude. We see in the limit Pe�1, which
corresponds to nearly isothermal �and nearly uniform con-
centration� behavior, that �→5 and �→0. So for this case,

the transfer function is constant and real valued, and the
transformations from frequency domain to time domain can
be carried out exactly. Hence, for linear perturbations the
model equations will become exact as PeT and PeG→0. It is
demonstrated in Preston7 that this property also holds in the
more general nonlinear case.

Away from the low Peclet number limit, we choose the
isothermal natural frequency at which to evaluate the transfer
function in order to avoid a convolution integral on transfor-
mation back into the time domain. Obviously during a gen-
eral bubble motion, there is more than one frequency, so the
best we can do is to select the single frequency of the mode
that is most affected by the damping effect of the heat and
mass transfers, that is, the resonant frequency. When the
damping is small, the resonant frequency is close to the natu-
ral frequency, which we adopt for simplicity. We also choose
to use the isothermal natural frequency, rather than the poly-
tropic natural frequency. This simplification holds for smaller
bubbles, while for larger bubbles the polytropic frequency is
up to 
1/2 higher than the isothermal. For air �
=1.4� this is
a difference of less than 20%, which is insignificant in com-
parison to the other approximations already made. An alter-
native choice of frequency, based on the time scale of forc-
ing, is examined in Preston.7 He also presents analysis to
show that the ringing frequency of bubble collapses and re-
bounds of moderate amplitudes also scale with the bubble
natural frequency, further validating this choice of frequency.

The imaginary part of the transfer function is also ne-
glected after the transformation into the time domain. In the
linear analysis, a nonzero imaginary part is related to a phase
difference between the gradient and average value, and this
phase difference increases with Peclet number. Under these
circumstances, the model cannot accurately replicate the
complicated behavior of the temperature field that is ob-
served in full computations. However, as detailed in
Preston,7 the POD results in Sec. II C show that this particu-
lar detail is not of major importance since the vast majority
of the energy is captured in the first POD mode. The POD
results are used to further validate the use of the linear analy-
sis in the determination of the transfer coefficients by super-
posing the values of �T and �C determined from POD analy-
sis of full computations on the upper plot of Fig. 6. Each of
the data points represents an average of many computations
of different forcing amplitude and width at the given Peclet
number.

While the data points generally follow the trend pre-
dicted by the linear analysis, the value of � derived from the
concentration fields at Pe=28.8 is lower than expected. This
is a result of the rather complex concentration fields illus-
trated in Fig. 2. In particular, at instances �b� and �e� in Figs.
2 and 3, the instantaneous mass-transfer coefficient, �C, is
negative. This impacts the shape of the first POD mode by
reducing the slope at the bubble wall, which effectively de-
creases the value of � obtained from the POD analysis. The
impact of the negative instantaneous heat-transfer coeffi-
cient, �T, on the value of � obtained from the POD analysis,
is not as great since �T is negative for less time than �C �as
indicated on Fig. 3�. The more complex concentration fields
are thought to be a result of the mass diffusion being forced

FIG. 6. �a� Real part and �b� phase of transfer function from linear analysis
and � from POD analysis: �——�, linear analysis; ���, POD results from
temperature fields; ���, POD results from concentration fields.
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by the time-varying concentration at the bubble wall. In con-
trast, the thermal diffusion is forced by the compression heat-
ing term acting �relatively uniformly� over the bubble inte-
rior with the wall temperature remaining practically constant.
Regardless of the discrepancies for some of the POD results,
the data points generally follow the trend predicted by linear
analysis. This indicates that linear analysis is a good means
of determining the transfer coefficients in the absence of
POD data.

Finally, an analysis for low Peclet numbers �Preston7�
shows that the constant-transfer model agrees with the series
expansion of the full nonlinear equations for C and T to first
order in the Peclet numbers.

IV. EVALUATION OF MODELS

In this section, we investigate the accuracy of the
constant-transfer model by comparing results directly to full-
bubble computations. We note that there are some experi-
mental data with which the models could be compared, but
they are not extensive enough to allow a comparison over a
wide range of parameter values. Moreover, there are a large
number of competing physical effects that determine the ul-
timate behavior of, for example, bubble radius history. We
regard it as more systematic to compare to numerical solu-
tions of the full equations �which, for example, already im-
plicitly assume spherical bubbles�, so that particular model-
ing assumptions can be tested in isolation. Aside from the
use of constant transfer coefficients �the topic of this paper�,
other assumptions used in developing this model were tested
against the full computations; a full account of those tests is
given in Preston.7 Finally, because we only compare with
numerical simulations, the results should be interpreted
strictly as necessary conditions for correctness of the result-
ing model. It is left for future work to evaluate the model in
more realistic environments, for example where effects such
as liquid compressibility and nonspherical effects are impor-
tant. We test the model for a variety of forcings, ranging
from the Gaussian pulses used in previous sections to har-
monic forcing where the frequency and amplitude are varied
systematically. In addition, we adapt the constant-transfer
model to one that assumes the mass diffusion to be infinitely
fast, and we examine pure gas bubbles. This enables the
thermal and mass-transfer modeling to be assessed indepen-
dently.

A. Gas-vapor bubbles

Figures 7 and 8 compare the different models with a full
computation for two Gaussian pressure pulses of very differ-
ent time scales. Note that � denotes the total effective kine-
matic viscosity nondimensionalized by �L and that �eff is the
effective polytropic index.

While the constant-transfer model slightly overestimates
the initial growth and overdamps the rebounds, it is better
than the other reduced-order models that show greater depar-
tures from the full computation. In particular, the polytropic
model significantly underestimates the initial bubble growth,
due to �eff=1.21 being determined from linear analysis.1 In
reality, the time scales for the initial bubble growth under the

present imposed pressures are far slower than the time scale
that is associated with the bubble natural frequency that was
used to compute �eff, so the true behavior is closer to isother-
mal, �eff=1. Interestingly, though the constant-transfer model
also uses the bubble natural frequency to compute transfer
coefficients, it is clearly not as sensitive to that value.

The isothermal model makes a better estimate of the
slow initial growth than the polytropic model, but the growth
is overestimated. This is likely due to the infinitely fast dif-
fusion of vapor, as explained at the end of this section. There
are also problems with the isothermal model that are associ-
ated with the use of an effective dimensionless liquid viscos-
ity, �, greater than unity in order to account for damping due
to the otherwise neglected diffusive effects. The value
�=20 is chosen to match linear analysis of the full diffusion
equations,1 and works reasonably well for the first bubble
rebound in Fig. 7�b�. However, it increasingly overdamps the
subsequent rebounds. Furthermore, in Fig. 8�b� the same
value of effective viscosity results in underattenuated bubble
rebounds. This might be corrected by using a higher effective
viscosity, but the fact that the appropriate value to use is not
known a priori is a limitation of that approach.

The model of Toegel et al.6 �and the similar model used
by Matula et al.17� uses fluxes based on estimates of the
diffusive penetration lengths. The time scale used in their

estimates is tR�R / 	Ṙ	, where the overdot denotes a deriva-
tive with respect to time. This time scale results in low heat
and mass transfer during the final stage of collapse and initial

rebound when Ṙ0. While the duration of this behavior is
so short as to not adversely impact the bubble dynamics, the
model of Toegel et al. has limitations due to the equations
not matching the full equations in the limit of low Pe �slow
time scales�. In this limit, the diffusive penetration length
estimated using tR may approach or exceed the bubble ra-
dius. To account for this situation, Toegel et al. place a cutoff
limit of R /� on the thermal penetration length. This corre-
sponds to implementing a lower limit of � on the transfer
coefficient �. However, the analysis for low Peclet numbers
included in Preston7 demonstrates that the correct lower limit
is 5 �as is also indicated empirically in Fig. 6�.

The impact of the incorrect cutoff is demonstrated in
both Figs. 7 and 8, where the model of Toegel et al. under-

FIG. 7. �Color online� Bubble radius �on two different time scales� com-
puted with full computation and a variety of models for a gas-vapor bubble
with PeT=36.4 and PeG=28.8; constant-transfer model ��T=6.62,�C

=6.21�, model of Toegel et al., isothermal model ��=20�, polytropic model
��eff=1.21,�=20�. �Parameters same as Fig. 1 �Case E, A=0.985�.�
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estimates the initial growth. This is more evident in the latter
figure, for which the forcing is ten times slower. We would
like to clarify here that we only implemented the flux models
of Toegel et al. in our comparisons. Other aspects of their
model, such as the van der Waals equation of state and liquid
compressibility, were not implemented. Implementing only
the heat and mass fluxes of the model of Toegel et al., while
keeping other assumptions consistent with our model and our
full bubble computation, enables the modeling of the heat
and mass transfer to be studied in isolation.

A systematic evaluation of the relative errors in Rmax,

Rrebound, Rmin, Tmax, pmax, and C̄min �as defined in Sec. II A�
was also undertaken for a range of the parameters tw, A, PeT,
and PeG. The results of this analysis are presented in Preston7

and are only summarized here. The errors in all the variables
are consistently lower for the constant-transfer model than
for other reduced-order models. In particular, the constant-
transfer model yields estimates of Rmax within a few percent
of the full computation. For moderate bubble growths, the
important variable, Rrebound, is also within a few percent of
the full computation, while for some larger bubble growths
the errors are as high as 30%. The errors in Rmin are typically
within 20–30%, except for one data point where the error is
as high as 80%. In the context of the small minimum radii,
such large relative errors do not have significant conse-
quences. In any case, the estimates of Rmin of the constant-
transfer model are more accurate than those of the other
models. The constant-transfer model yields estimates for
Tmax within about 20% of the full computations. Estimates of

pmax and C̄min from the constant-transfer model are only ac-
curate to within an order of magnitude, but these are more
accurate than those from the other reduced-order models.

The model comparisons were only made for situations in
which Rmax is less than about 10. While the model equations
can be solved for greater bubble growths, the full computa-
tion is impeded by the large spatial gradients in C and T that
exist near the bubble wall during violent collapse. To resolve
these large gradients, additional spectral modes are required
that, due to stability constraints of the explicit time-marching
scheme, result in the time step being reduced to near the
limit of machine accuracy. This limitation of the full compu-
tation prevents full validation of the models at higher values
of Rmax. Similarly large spatial gradients also occur at higher
values of Peclet number, which prevents full validation of

the model in these situations. Future full-bubble computa-
tions using an implicit time-marching scheme may be able to
overcome these restrictions.

Finally, we modify the constant-transfer model to one
that assumes mass diffusion to be infinitely fast, while retain-
ing the heat diffusion model. We recognize that this is a
purely hypothetical situation, since the mass and thermal dif-
fusivities are generally of the same order. This situation is
examined in order to illustrate the importance of the mass
diffusion modeling. The modification is achieved by redefin-
ing the pressure, p, in Eqs. �5� and �6� to be the partial
pressure of noncondensible gas, pA. The constant vapor pres-
sure, pvsat, is then added to Eq. �5� and the ṁV term is re-
moved from Eq. �6� to yield

Eu�pA + pvsat − p��t�� = R
d2R

dt2 +
3

2

dR

dt
�2

+
4

Re

1

R

dR

dt

+
2

WeR
, �26�

dpA

dt
= �− 3


R

pA

dR

dt
−

1

PeT

1

R
kw

�T

�y
�

y=1
� . �27�

Equations �7� and �12� are then replaced by

mV =
mA0

�
, �28�

where � is given by Eq. �10�. The above equation is derived

by noting that C̄=Cw for infinitely fast mass diffusion, which
enables Eq. �9� and approximation �13� �that is now exact
due to the uniform concentration distribution� to be com-
bined.

The bubble radius determined by the full computation is
compared to the constant-transfer model for both finite and
infinitely fast mass diffusion in Fig. 9�a�. It is apparent that
infinitely fast mass diffusion results in overestimation of the
initial bubble growth and subsequent rebounds, and underes-
timation of the bubble minimum radii.

Plots of the average and wall vapor concentrations in
Fig. 9�b� show a higher average vapor concentration for the
model with fast mass diffusion, which indicates that the
overestimation of the bubble growth is due to too much
evaporation into the bubble. Similarly, the underestimation
of the bubble minimum radii is caused by too much vapor

FIG. 8. �Color online� Bubble radius �on two different
time scales� computed with full computation and a va-
riety of models for a gas-vapor bubble with PeT=36.4
and PeG=28.8; constant-transfer model ��T=6.62,�C

=6.21�, model of Toegel et al., isothermal model ��
=20�, polytropic model ��eff=1.21,�=20�. The time
scale of the pulse is an order of magnitude larger than
that in Fig. 7. �Parameters same as Fig. 7, except A
=0.97 and tw=435 �Case F, A=0.97�.�
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condensing out of the bubble during collapse. Although it is
not clear on the scale of Fig. 9�b�, the average vapor concen-
tration during collapse obtained from the model with fast
mass diffusion is an order of magnitude lower than it is for
the full computation and the constant-transfer model with
finite rate diffusion. It is obvious that the vapor-trapping ef-
fect identified by Storey and Szeri10 is important in this par-
ticular circumstance, and the mass-diffusion modeling in the
constant-transfer model is able to capture this behavior. This
may have important consequences in sonochemistry, where
the amount of vapor trapped in the bubble during collapse
would impact the chemical reactions. In the present applica-
tion to bubble dynamics, the modeling of mass diffusion is
important during the collapse stage to avoid the unrealisti-
cally small minimum radii observed in Fig. 9�a� for the
model with fast mass diffusion.

Thus, in order to accurately model the bubble dynamics,
it is necessary to account for finite rate mass diffusion of
vapor during both expansion and collapse. The constant-
transfer model with finite rate diffusion is able to predict the
average and wall vapor concentrations reasonably well, re-
sulting in good predictions of the bubble radius.

B. Gas bubbles

We now shift attention to pure gas bubbles in order to
evaluate the heat-transfer component of the constant-transfer
model. Figure 10 compares computed bubble radii of differ-
ent models to the full computation for two gas bubbles with
PeT=4.61 and 34.8. For the lower value of PeT �Fig. 10�a��,
the behavior is close to the isothermal limit, and, as antici-
pated, the constant-transfer model is essentially identical to
the full computation. In addition, the nearly isothermal
model of Prosperetti18 agrees almost exactly with the full

computation, since this is within the limit for which the
model is valid. The model of Storey and Szeri19 underesti-
mates the attenuation because there is no thermal damping in
their model. The polytropic model with effective viscosity
�chosen to match linear analysis� underestimates the initial
growth, probably due to too much viscous damping.

For the bubble with larger PeT, the behavior departs
from the isothermal limit. Figure 10�b� shows that the
constant-transfer model accurately captures the initial bubble
growth and the attenuation of the bubble rebounds. The ab-
sence of thermal damping in the switching model of Storey
results in the slow decay of the rebounds. By contrast, the
nearly isothermal model of Prosperetti overpredicts the at-
tenuation of the bubble rebounds. The polytropic model also
behaves poorly since, as explained in Sec. IV A, the use of a
polytropic index of �eff=1.21 prevents the correct prediction
of the initial expansion, which is relatively slow and there-
fore nearer the isothermal limit. Again, it seems that the
constant-transfer model can correctly capture the nearly iso-
thermal expansion even though we use a value of �T that has
been chosen to match behavior away from this limit.

C. Harmonic forcing

The constant-transfer model is intended for application
to bubbles exposed to pressure excursions that may arise in
complicated bubbly flows. While the previously used Gauss-
ian pressure pulses provide a quick means of testing reduced-
order models for a variety of forcings, it is also valuable to
test them with harmonic forcings over a range of frequencies
and amplitudes. In this section, we compare the constant-
transfer model with the often used polytropic model �using
the effective values of polytropic index, �eff, and effective

FIG. 9. �Color online� �a� Bubble radii and �b� concen-
trations computed with the full computation, the
constant-transfer model with finite rate mass-diffusion
modeling, and the constant-transfer model with infi-
nitely fast mass diffusion. The bubble consists of gas
and vapor with PeT=36.4 and PeG=28.8. �Parameters
same as Fig. 1 �Case E, A=0.985��.

FIG. 10. �Color online� Computed radii for two gas
bubbles subject to a Gaussian decrease in far-field pres-
sure. The curves show comparisons to the full compu-
tation of the constant-transfer model, the polytropic
model with effective damping, the switching model of
Storey and Szeri, and the nearly isothermal model of
Prosperetti. �a� PeT=4.61 �Case I, �T=5.05, �=2.6,
�eff=1.03�; �b� PeT=34.8 �Case J, �T=6.54, �=20,
�eff=1.21�.
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liquid viscosity, �, obtained to match linear theory1� and the
full computation of the complete conservation equations. We
use the harmonic forcing pressure

p��t� = p�0�1 + A sin  ft� , �29�

where A is the amplitude and  f is nondimensionalized by
the linear natural bubble frequency. In this context, it is clear
that the best frequency for computing the appropriate value
of �T in the constant-transfer model would be  f. However,
in order to provide an unbiased test of the model that can be
extrapolated to general forcing, we compute �T using the
bubble natural frequency by setting =1 in Eq. �21�, regard-
less of the actual forcing frequency. To be consistent, we also
use  f =1 when computing the value of effective polytropic
index and damping in the polytropic model.

Figure 11 presents the response of a gas bubble with
PeT=9.26 and amplitude A=0.6 over a range of frequencies
and shows the maximum value of bubble radius attained dur-
ing a steady oscillation. The results are obtained by integrat-
ing the equations forward in time until a steady-state cycle is
achieved. It should be noted that around each of the har-
monic peaks there actually exist two different stable steady-
state solutions.20,21 The solution that is found depends on the
initial conditions. The present calculations are started with a

bubble in static equilibrium �R=1 and Ṙ=0� and converge to
only one of these solutions. If other initial conditions were
chosen, the hysteresis behavior typical of many nonlinear
systems would become evident.

The constant-transfer model shows excellent agreement
with the full computation over all frequencies, even though
the model uses  f =1. In contrast, as first identified by
Prosperetti et al.,1 neither of the polytropic models is able to
predict the location and magnitude of the harmonic peaks.
Indeed, the behavior of the polytropic model depends
strongly on the value of effective damping that is used. This
poor feature of the polytropic model is further emphasized

by the existence of a peak at  f 0.63 when �=1. This spu-
rious peak is caused by a 3/2 ultraharmonic mode that results
in period doubling of the bubble response. The existence of
this peak, and additional ultraharmonic peaks at higher forc-
ing amplitudes,21 can give rise to gross errors in the response
of the polytropic model if the effective damping is not high
enough.

The accuracy of the constant-transfer model for a larger
Peclet number �PeT=42.9� and various forcing amplitudes is
presented in Fig. 12. This shows a bifurcation diagram of the
computed bubble radius sampled at every period of forcing
for a gas bubble driven at a forcing frequency  f =0.8 with
an incrementally increasing pressure amplitude. Once steady
state was reached at A=1.2, the pressure was increased at a
rate of 10−3 per cycle up to A=1.5 and then at a rate of 10−4

per cycle. The results of the constant-transfer model
��T=6.96� are compared to the full computation and to the
polytropic model with and without effective damping
��=23.05 and 1�.

The curve for the polytropic model with effective damp-
ing ��=23.05� is shifted significantly to the right and below
the full computation. Interestingly, the polytropic model
without effective damping ��=1� yields results that agree
more closely with the full computation, although the radius
is slightly higher due to the lack of thermal damping. It ap-
pears that the addition of effective damping to the polytropic
model substantially delays the onset of the bifurcations and
overdamps the bubble response. In addition, at higher forc-
ing amplitude �A�2�, the polytropic model with effective
damping returns from the chaotic oscillations to the subhar-
monic oscillations. The use of this model in certain regimes
could result in gross errors in predicted bubble response.

By contrast, the constant-transfer model shows good
agreement with the full computation over a range of forcing
amplitudes. Agreement is excellent through the first subhar-
monic bifurcation at A1.56. The agreement at the second

FIG. 11. �Color online� Frequency-response curves for the forced oscilla-
tions of a gas bubble �PeT=9.26, Case K� for a dimensionless pressure
amplitude A=0.6. The results of the constant-transfer model ��T=5.18� are
compared to the full computation and to the polytropic model with and
without effective damping ��=6.35 and 1, �eff=1.079�.

FIG. 12. �Color online� Bifurcation diagram of the bubble radius sampled at
every period of the forcing pressure for a gas bubble �PeT=42.9, Case L�
driven with forcing frequency  f =0.8 and a slowly increasing pressure am-
plitude, A. The results of the constant-transfer model ��T=6.96� are com-
pared to the full computation and to the polytropic model with and without
effective damping ��=23.05 and 1, �eff=1.230�.
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harmonic bifurcation is not as good, with the full computa-
tion giving the bifurcation at A1.85 while the constant-
transfer model bifurcated at A1.86. Chaotic oscillations set
in at A1.91 for the full computation and at A1.90 for the
constant-transfer model. The exact form of these chaotic os-
cillations was found to depend strongly on numerical toler-
ances in the integration as well as the rate at which the am-
plitude is increased.

V. CONCLUSIONS

A new constant-transfer model of the heat- and mass-
transfer effects on bubble dynamics has been developed. The
constant-transfer model relates the temperature and concen-
tration gradients at the bubble wall to the volume-averaged
bubble temperature and concentration through the use of
constant heat- and mass-transfer coefficients. The model was
motivated by examining detailed simulations of the full gov-
erning equations for spherical bubbles, and by systematic
analysis of the results using proper orthogonal decomposi-
tion �POD�. The values of the transfer coefficients could be
determined directly from the first POD mode, and were dem-
onstrated to depend on the Peclet number. Linear analysis of
the diffusion equations was also presented as a means for
determining the transfer coefficients, without the need for
POD results. The model equations become exact as the Pe-
clet numbers tend to zero. The constant-transfer model re-
quires at most three ordinary differential equations to accu-
rately capture diffusive effects, enabling it to be readily
implemented into existing and future algorithms for compli-
cated bubbly flows.

The results show that the use of constant heat- and mass-
transfer coefficients is reasonable over a large parameter
space. The model was found to capture the bubble dynamics
with good accuracy. In particular, the amplitudes of bubble
growth and rebound were within a few percent of the full
computations, while the maximum internal temperature on
collapse was within about 20%. The maximum pressures and
minimum vapor concentrations in the bubble upon collapse
are less accurately predicted, with model values only within
an order of magnitude of those from the full computation.

As expected, the model works extremely well for Peclet
numbers below about 10. At higher Peclet numbers, the
model equations neglect the phase difference between the
gradient at the bubble wall and the average bubble value.
However, this does not have too serious an effect on the
results for the parameter space considered in this paper. It
remains for the model to be tested at even larger Peclet num-

bers and bubble growths than those considered in this paper.
However, this is limited by the difficulty with the full com-
putation, which is impeded by the very large spatial gradients
in temperature and concentration near the bubble wall.
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