Proceedings of ASME FEDSM’'02

2002 ASME Fluids Engineering Division Summer Meeting

July 14-18, 2002, Montreal, Quebec, Canada

FEDSM2002-31026

A REDUCED-ORDER MODEL OF HEAT TRANSFER EFFECTS ON THE DYNAMICS
OF BUBBLES

Al Preston
Tim Colonius*
Christopher E. Brennen

Division of Engineering and Applied Science
California Institute of Technology
Pasadena, CA 91125

email: colonius@caltech.edu

ABSTRACT

The Rayleigh-Plessetquationhasbeenusedextensiely to
modelsphericalbubble dynamics,yet it hasbeenshown thatit
cannotcorrectlycapturedampingeffectsdueto massandthermal
diffusion. Radialdiffusionequationsnay be solvedfor a single
bubble, but theseare too computationallyexpensve to imple-
mentinto a continuummodelfor bubbly cavitating flows since
the diffusion equationsmust be solved at eachpositionin the
flow. Thegoalof the presentesearchs to derive reduced-order
modelsthataccountfor thermalandmassdiffusion. We present
a model that can capturethe dampingeffects of the diffusion
processeén two ODE's, and givesbetterresultsthan previous
models.

INTRODUCTION

A continuummodelthatcoupleshe Rayleigh-Plessetqua-
tion for bubble dynamicswith the equationsof continuity and
momentum(vanWijngaardenl968,1972)hasbeenusedexten-
sively in the computatiorof bubbly cavitating flows. Recentex-
amplesinclude Shimadaet al. (1999),Wang(1999), Coloniuset
al. (2000)and Prestonet al. (2002). A significantlimitation is
the useof a polytropic approximatiorto accountfor the expan-
sion and compressiorof the gashbubble interior and an effec-
tive liquid viscosityto accountfor dampingof the bubbleradial
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motion dueto heattransfer(Prosperettet al. 1988, Kameda&
Matsumoto1996). The correcttreatmentof the thermaleffects
requireghesolutionof theradialenegy equatiorin eachbubble
andthe surroundindiquid; howeverthisis anexpensve compu-
tation.

Previous modelsthat accountfor thermaldiffusive effects
include the modelsof Prosperetti1991) valid near either the
isothermalor adiabaticlimits. Thesemodelswork well in the
limits for which they wereintended but arenot accuratdor be-
havior betweerthetwo limits. Storey & Szeri(2001)developed
amodelthatswitcheshetweerisothermabndadiabaticoehaior
dependingiponrelative timescalesWhile this approactyielded
goodestimatesof peakbubbletemperaturesluring bubble col-
lapse,it is unableto correctly captureattenuatiorof bubblere-
boundsdueto thermaldampingeffects. Lertnuwat et al. (2001)
proposeda modelthat estimatedhe thermalenegy flux out of
the bubble by using an averagebubble temperatureand an es-
timation of the thermalpenetrationength. This seemsa rea-
sonableapproachearthe adiabaticlimit, but is clearly not rea-
sonablewvhenthethermalpenetratioengthapproachesr even
exceedghebubbleradius.

We proposeanalternatve thermalmodelthatis ableto cap-
ture thermaldampingeffectsover a wide rangeof applications.
The thermalmodelrequiresonly one additional ODE to be in-
tegratedalongsidethe Rayleigh-Plessetquation. The accurayg
of thethermalmodelis testedby comparingthe modelresponse
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of a singleforcedbubbleto a computationn which the full en-
ergy equationin the bubbleinterior is solved. Resultsshav that
the proposedthermalmodel producescloseragreemento full
computationghanpreviousmodels particularlycasesvherethe
amountof attenuatiorof bubblereboundss important.

Finally, we presentan extensionof the thermalmodelthat
incorporatesnassdiffusionof vaporin the bubble. Preliminary
resultsindicatethatthe masstransfermodelis alsoableto cap-
turethe extentof theinitial expansionandthe attenuatiorof the
bubble reboundsvery well. The masstransfermodel requires
oneadditionalODE to beintegrated.

THERMAL MODEL

The thermalmodelis basedon the simplified setof equa-
tions of Prosperettiet al. (1988) for a gashbubble with the in-
ternal pressureassumedo be spatially uniform. This assump-
tion enableghe derivation of the following ordinarydifferential
equationfor theinternalbubblepressure,

d 3 DoT dR
—"——"(p" " ‘pa>’ M

d = R\ R dy
which is coupledto the Rayleigh-Plessetquation! for the mo-
tion of theliquid,
4 dR 2

d?R 3 /dR\?
RW'FE(a) +@a+— p—poo(t). (2)

WeR

The variables in the above equations have been non-
dimensionalizedasR=R/R,, T = T'/T., p = p'/p| R?w2,
whiley =r'/R/(t) is theradial coordinatechoserto fix the bub-
ble wall aty = 1. The dimensionlesgasdiffusivity, Reynolds
number and Weber number are given respectiely as D =
K'/poCyRE0Y,, Re= Ry, /v) andWe = p| REw?Z/S, wherew,
is the bubblenaturalfrequeng. The non-dimensionainitial in-
ternalbubble pressurds computedfrom equilibrium of Eq. (2)
as, Po = P, + 2/We, Whereps, is thenon-dimensionaambient
pressure.

The ordinary differential Eqs. (1) and (2) are typically
closedby the radial enegy equationfor the temperaturedistri-
bution in the bubble,thatis coupleddirectly to Eq. (1) through
the temperaturgyradientat the bubblewall. We focuson ways
to estimatethe temperaturegyradientat the bubble wall without
solvingthe enegy equation.From linear analysisof the enegy
equationin thefrequeng domain,we canwrite,

oT’ o
oy yzl(w) =-Y(W)T (w), 3)

wherethetransferfunction W(w) is,

y=1

1The thermalmodel canreadily be usedwith otherforms of the Rayleigh-
Plesseequationthatincludeeffectsof liquid compressibility
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Fig_ure 1. Magnitude, O, and phase, 8 of the transfer function, W =
ae®, versus w/D.
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Hereprimesdenotesmallfluctuations;T (w) is the Fouriertrans-
form of T(t), andthe overbardenotesa quantity averagedover
thebubblevolume. Themagnitudeq, andphase$, of W = ae®

areplottedasfunctionsof frequeng in Fig. 1. We seein thelow
frequeng, or nearlyisothermallimit a — 5 and8 — 0 sothat
Eq. (3) maybeinvertedexactly. Away from theisothermalimit

we avoid the cornvolution integral resulting from the inversion
by makingthe crudeapproximatiorof settingW(w) = W(wx) in

Eq. (3), wherewy is acharacteristidrequeng of bubblemotion.
This allows theinversionto bewritten as,

T’ =

= () =—a(w) T (t+At), (5)

0y |y—q
whereAt = 68(w)/wx, representaphasdifferencebetweerthe
temperaturegradientat the bubble wall andthe averagebubble
temperature. The next approximationthat we malke is to ne-
glectthe phasdlifferenceandextendthe modelto the non-linear
regime. Thefinal approximationis written as,

oT —
3y y=1(t) ~ =0 (W) [T (1) —1]. (6)

Finally, we usethe perfectgaslaw to approximatethe volume
averagedbubbletemperatur@anddensity

T~ p/p, )
=T ~ pR, (8)

wherewe have alsousedthe assumptionthatthe pressuravithin
the bubbleis spatially uniform. Equations(1) and(2) together
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with the approximationg6) and(8) constitutethe final form of
the thermalmodel. It canbe shavn that the thermalmodelis
identicalto thefull non-linearequationsn the nearlyisothermal
limit, while away from this limit the useof a(w), computed
from Eq. (4), givesthe bestagreemenof thelinearizedforms of
thethermalmodelandfull equations.

While it is clearthat for harmonicallyforced bubblesthe
characterisitidrequeng, w, shouldbe takenasthedriving fre-
queng, it is notsoclearwhatvalueof w shouldbeusedn more
generalapplications. Thereforein all computationsve usethe
linearnaturalbubblefrequeng for settingthe modelparameter
which underthe presentnon-dimensionalizatiors achieved by
settingw = 1. Althoughthis approximatioris crude,our results
demonstrat¢hatit workswell in awide rangeof computations.

RESULTS
Harmonic Forcing

The thermal model is intendedfor applicationto general
forcingsthat may arisein continuumbubbly modelflows, such
asthe nozzleflow of Prestonet al. (2002). Ratherthantestthe
modelwith specificexampleswe useharmonicforcingsover a
wide rangeof frequenciesandamplitues.The harmonicforcing
field is givenby,

Poo (t) = Poog (1 + Asinwiyt), 9)

whereA is the non-dimensionabmplitudeand ws is the forc-
ing frequeny non-dimensionalizeddy the linear naturalbubble
frequeng.

Fig. 2 shaws a bifurcationdiagramof the computedbub-
ble radiussampledat every period of the forcing, for a 10um
radius bubble driven at a forcing frequeng ws = 0.8 with an
incrementallyincreasingdriving pressureamplitude. The curve
for the thermalmodelis almostidentical to the full computa-
tion 2 throughthe first and secondsubharmonidifurcationsat
A~ 1.61and1.90. At A~ 1.96 thefull computationandther
malmodelbothpredictchaotichehavior for whichtheexactform
wasfoundto bevery sensitveto tolerance$n thenumericainte-
grationaswell astherateatwhichthedriving pressuremplitude
wasincreased.

We also comparethe thermal model with the polytropic
model (using the effective valuesof polytropic index, kef, and
dampingratio, B = /4, obtainedto match linear theory
(Prosperettiet al. 1988)). The curve for the polytropic model
with effective damping(p = 6.35), while maintainingthe same
generalform asthe full computation,is shifted significantlyto
theright andslightly below thefull computation.The polytropic
modelwithouteffective damping(p = 1) yieldsresultsthatagree

2Thefull computatiorsolvestheenepy equatiorfor thebubbleinterior using
a Chebyche spectralcollocationmethodwith an adaptablenumberof modes
(Kamath& Prosperettll989,Hao& Prosperettil999).

Full Computation
Thermal Model

LA Sy S e 1L 1L L St St B B

1 Polytropic (B = 1)
Polytropic (B = 6.35)
oL A S ST ST
1.2 14 16 1.8 2 2.2
A

Figure 2. Bifurcation diagram of the bubble radius sampled at every
period of the forcing pressure for an air bubble of equilibrium radius
Ry = 10pmin water driven with forcing frequency wf = 0.8 and a slowly
increasing pressure amplitude, A. Ambient conditions are 20°C and 1 at-
mosphere. The curves show comparisons to the full computation of the
thermal model and the polytropic model with and without effective damp-
ing (B = 6.35and 1 respectively). The effective polytropic index for the
polytropic model is Kef = 1.079and parameters for the thermal model
are D =0.108and a0 = 5.184

muchmorecloselywith thefull computationlt appearghatthe

addition of effective dampingto the polytropic model substan-
tially delaysthe onsetof the bifurcationsaswell slightly over

dampshebubbleresponse.

Figure 3 shavs the responsef a 10um bubbleforcedwith
non-dimensiongbressureamplitudeA = 0.6 overarangeof fre-
guencies.This graphplots (for a given forcing frequeng, ws)
themaximumvalueof bubbleradiusattainedduringa steadyos-
cillation. The thermalmodelshavs excellentagreemento the
full computationover all rangeof frequenciesgventhoughthe
modelwastunedfor forcing at the bubblenaturalfrequeng. By
contrast the polytropic modelis unableto correctly predictthe
locationandmagnitudeof the harmonicpeaks andthe behaior
of the modeldependsstrongly on the (arbitrary) value of effec-
tive dampingthatis used.

We alsoconstructedifurcationdiagramsandfrequeng re-
sponsesurvesfor a50umbubble,which shavedsimilartrendsas
the 10umbubble. For bothbubblesizesthe thermalmodelgives
resultsthat agreewith the full computationmuch more closely
thanthe polytropic modelwith or without effective damping.

Gaussian Forcing
While the thermalmodelshows excellentagreemento the
full computatiorfor harmonicforcingsof arangeof frequencies
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Figure 3. Frequency-response curves for the forced oscillations of an
air bubble of radius R’O = 10pumin water for a dimensionless pressure
amplitude A= 0.6. Ambient conditions are 20°C and 1 atmosphere. The
curves show comparisons to the full computation of the thermal model
and the polytropic model with and without effective damping ([3 =6.35
and 1 respectively). The effective polytropic index for the polytropic model
is Kef = 1.079and parameters for the thermal model are D = 0.108
and 00 = 5.184

andamplitude we now wish to testthe modelfor morecomplex
forcings. Singlebubblesaresubjectedo thefollowing Gaussian
decreasén farfield pressure,

Pa(t) = Py (1= AP~ ((t=10) /t)°] ), (20)

which hasbeenchosento approximatelyrepresenthe pressure
thatwould be experiencecdy a bubblethatis corvectedthrough
the nozzleof Prestonet al. (2002). Figures4 and5 compare
computedbubble radii of different modelsto the full compu-
tation for initial equilibrium radii of 4 and 40um, respectiely.
For the small 4um bubble (Fig. 4) the behaior is very close
to the isothermallimit, and as anticipatedthe thermal model
curve is essentiallyidenticalto the full computation. In addi-
tion the nearly isothermalmodel of Prosperettiagreesalmost
exactly with the full computation sincethis is within the limit
for which the modelis valid. The switchingmodelof Storey &
Szeri(2001) underestimatethe attenuatiorbecausehereis no
thermaldampingin eithertheisothermabr adiabatidimits. The
polytropicmodelwith effectivedampingunderpredictsheinitial
growth, probablydueto too muchviscousdampingthat results
from usingan effective viscosity

For thelarge40umbubblethe behaior departssignificantly
fromtheisothermalimit. Figure5 shovsthatthethermalmodel
captureghe initial bubblegrowth andattenuatiorof bubblere-
boundsreasonablywell, but the periodsof the reboundsare
slightly overpredicted.The absenceof thermaldampingin the
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Full Computation
Therma Model
Polytropic
Storey & Szeri
Nearly Isothermal

LI Sy L B s B B B

O\\\\l\\\\l\\\\l\\\\l\\\\l\\\\

0 50 100 150 200 250 300
time

Figure 4. Computed bubble radius for an air bubble of equilibrium radius
Ry = 4um(D = 0.217) in water subject to a Gaussian decrease in far
field pressure (A = 1.0, tyy, = 40.0). Ambient conditions are 20°C and 1
atmosphere. The curves show comparisons to the full computation of the
thermal model (00 = 5.089), the polytropic model with effective damping
(B =2.64, ke = 1.027), the switching model of Storey & Szeri (2001),
and the nearly isothermal model of Prosperetti et al. (1991).

switching model of Storey & Szeri(2001)is clearly shovn by

the slow decayof therebounds.By contrastthe nearlyisother

mal model of Prosperettisererely overpredictsthe attenuation
of the bubble rebounds. The polytropic model also behaes
poorly, sincethe useof a polytropicindex of ke = 1.213 pre-

ventsthe correctpredictionof theinitial expansionwhichis rel-

atively slow andthereforenearerthe isothermallimit. It seems
thatthe presenthermalmodelcancorrectly capturethis nearly
isothermalexpansioneven thoughwe usea valueof a thathas
beenchoserto matchbehavior away from this limit.

In Fig. 6 we presenplots of thetemperaturgradientat the
bubblewall asa function of averagebubbletemperaturdor the
computationsn Figs.4 and5. Thepresentnodelrepresentshis
relationasa straightline with slopea (cf. Eq. (6)). Thebeha-
ior for thefull computatiorcanbe remarkablydifferent. For the
small 4um bubble (nearlyisothermalbehavior) thereis a small
hysterisidoop in the full computationalthoughtheloop is very
thin and always closeto the single line of the thermalmodel.
For the large 40um bubblethe hysterisiseffect is far more pro-
nouncedandit is evidentthatthe thermalmodelseverelyunder
estimateghe temperaturgradientat the point aroundthe mini-
mumradius(maximumaveragebubbletemperature).

Therearetwo reasonsvhy this underpredictiorof temper
ature gradientdoesnot significantly impact the overall results
of the thermalmodel. Firstly, the time of bubblecollapsewhen
theselarge gradientsoccuris extremely short comparedo the
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Figure 5. Computed bubble radius for an air bubble of equilibrium radius
Ry = 40um(D = 0.0287 in water subject to a Gaussian decrease in
far field pressure (A = 1.0, tyy, = 40.0). Ambient conditions are 20°C
and 1 atmosphere. The curves show comparisons to the full computation
of the thermal model (0 = 7.524), the polytropic model with effective
damping (B = 19.91, keg = 1.213), the switching model of Storey &
Szeri (2001), and the nearly isothermal model of Prosperetti et al. (1991).
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Figure 6. Temperature gradient at bubble wall as a function of average
bubble temperature for full computation and thermal model for computa-

tions in Fig. 4 (Ry = 4pm) and Fig. 5 (R = 40um).

overall period of a reboundcycle so thatthe modelis only in-
accuratefor a very shortperiodof time. Secondly whenlarge
temperaturgyradientsoccur, the bubbleis nearits minimumra-
dius sothatthetotal surfaceareathroughwhich thermalenegy
is transferredby conductionis very small. Consequentlythis
leadsto only a slightunderpredictiorof thermalenegy loss,and
henceonly a slight underpredictiorof attenuatiorof the bubble
rebounds.

We also comparedthe thermalmodelto the full computa-
tion for a 40um bubble subjectto Gaussiarpressuredecreases

with several differentamplitudesand durationsandfound good
agreemenin all cases.

EXTENSION TO INCLUDE MASS TRANSFER

The simplified masstransfermodelis an extensionof the
thermalmodel. Assumingthatthe ratiosof specificheatsof the
non-condensiblgasandvaporareequalEq. (1) canberederived
to yield thefollowing (Ichiharaetal. 2000),

dp _ 3y ( poD T
d R\ R dy|.,

Here Ry is the gasconstanof the vaporandm] is the massflux
of vaporper unit areainto the bubble. The lasttermrepresents
anadditionalenegy flux dueto flux of vaporinto or out of the
bubble. To closethe equationsve needto be ableto determine
thevalueof m]. Fromreciprocaldiffusion,we canalsowrite,

g — oL 9C
”{v—p@Ray

drR -
- pa + g(van(/> - (11)

(12)

y=1
wherep, D andC arethe gasmixturedensity masddiffusivity of
the gas/hapormixture andmassconcentratiorof vapor, all eval-
uatedatthebubblewall. To avoid solvingthefull masddiffusion
equationsn the bubblewe make a similar approximatiorto Eq.
(6),

oC

| & (C—Cu). (13)

y=1

Here C is the concentratiorof vapor at the wall which is de-
terminedby the assumptiorthat the partial pressureof vaporis
equalto the saturatedraporpressureThevolumeaveragecton-
centrationC, is approximatedy,

_m
Meg + M’
wheremy, is the constantmassof non-condensiblgasin the
bubbleandm, is the total massof vaporin the bubblewhich is
found by integrating 4riR°ri{! in time. The value of ac in Eg.
(13) is againdeterminedby matchingto linear theory but be-
causethe thermaland massdiffusivities for air/vapor mixtures
areapproximatelythesamewe simply choosenc = a for all the
computations. Equations(11) through(14) constitutethe new
setof equationdor the presentmodel. The form of the Eq. (8)
alsohasto be modifiedto allow for a nonconstanmassof bub-
ble contents.The additionalcomputationabxpenseof the mass
transfermodelover the thermalmodelis only theintegrationof
oneextraODEto determinghetotalmassof vaporin thebubble.
Figure 7 compareshe bubble radiusfrom a full computa-
tion® to the presenmasstransfemodel. In additionwe consider

Cwn (14)

3Thefull computatiorsolvesthe enegy andmasgdiffusion equationgor the
bubbleinterior usingthe Chebyche spectralcollocationmethod.
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Figure 7. Computed bubble radius for an air/vapor bubble of equilibrium
radius Ry = 40um (D = 0.0284) in water subject to a Gaussian de-
crease in far field pressure (A = 1.0, t, = 40.0). Ambient conditions
are 20°C and 1 atmosphere. The curves show comparisons to the full
computation of the present model with O chosen to match linearized full
equations (0 = 7.5) and the polytropic model with effective damping

(B=19.91 kef = 1.213.

a polytropic modelthat assumes constantvaporpressure.Pa-
rameterdor the computationsarethe sameasfor Fig. 5 except
for the addition of vapor We seethat the masstransfermodel
yieldsresultssimilar to the thermalmodel,althoughratherthan
underpredictinghe attenuatiorit overpredictst, andratherthan
overestimatinghe period of bubble reboundst slightly under
predictsit. Themasstransfermodelis superiorto the polytropic
modelwhich suffersfrom the sameproblemasthe casewithout
vaporin thattheinitial expansionis grosslyunderpredicted.

CONCLUSION

A simple and efficient model that accountsfor thermal
dampingeffectsin gasbubbleshasbeenpresented.The ther
mal modelhasbeenshavn to have excellentagreementvith ex-
pensve full bubblecomputation®ver awide rangeof harmonic
forcing frequencieandamplitudes.in addition,whensubjected
to morecomplex Gaussiarforcings,thethermalmodelyieldsre-
sultsthatagreeto full thermalcomputationsnuchmoreclosely
thanprevioussimplemodels.Neartheisothermalimit thether
mal modelis equivalentto the nearlyisothermalmodelof Pros-
peretti(1991), but away from this limit the thermalmodeldoes
betterthanthe nearlyisothermaimodel.

Thethermalmodelhasalsobeenextendedto includemass
diffusion of vapor within the gasand preliminary resultsindi-
catethatthis masdransfermodelobtainsresultsthatagreemuch
morecloselywith a full gashaporbubblecomputationthanthe

polytropic modelwith effective dampingandassumedonstant
vaporpressurelt now remainsto incorporatethe simple model
into the bubbly continuummodelto gaugewhat effectsthe dif-
fusive dampinghasin avariety of bubbly cavitating flows.
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