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Abstract. Recent observations of the geometries of growing and collapsing bubbles in typical
cavitating flows (van der Meulen and van Renesse 1989, Briancon-Marjollet and Franc 1990,
Ceccio and Brennen 1991, Kuhn de Chizelle et al. 1992) have revealed the complexity of the
“microfluidmechanics” associated with these flows. Clearly the interaction of individual bubbles
with the nearby solid surface and its boundary layer produce features in the dynamics of growth
and collapse which were not present in experiments on bubbles in a quiescent liquid. These include
several mechanisms for bubble fission prior to collapse and the role played by the concentration
of accumulated vorticity in producing a hybrid vortex/bubble during collapse.

The current paper presents a methodology for the calculation of the interaction between an
individual bubble and the irrotational flow exterior to the boundary layer on a body. Comparison
is made between computed bubble geometries and those previously observed experimentally. The
calculations also reveal the effect which the bubble has on the irrotational flow around the body

and consequently permits some preliminary evaluation of the interactions between neighbouring
bubbles.
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1 Introduction

The focus of this paper is on travelling bubble cavitation and the interactions
between the flow and the bubbles which can occur in this type of cavitating flow.
It is motivated by the fact that these interactions radically alter the dynamics of
bubble collapse and therefore the noise and damage potential of that process.
The dynamics of collapsing cavitation bubbles have received much attention
since it was first recognized that the violence of the collapse was responsible for
cavitation damage. The mechanisms of shock wave production during rebound
(Gilmore 1952, Hickling and Plesset 1964) and reentrant microjet shocks (Naude
and Ellis 1961, Benjamin and Ellis 1966, Lauterborn and Bolle 1975, Fujikawa and
Akamatsu 1980, Shima et al. 1981 & 1983, Kimoto 1987) have been extensively ex-
plored both experimentally and analytically. Yet virtually all of these observations
and analyses have focused on bubble collapse in a quiescent liquid despite the fact
that a number of experimenters have commented on the deformation of cavitation
bubbles by the flow (see, for example, Knapp and Hollander 1948, Parkin 1952,
Ellis 1952, Blake et al. 1977). Until the recent work of van der Meulen and van
Renesse (1989), Briancon-Marjollet and Franc (1990), Ceccio and Brennen (1991),
Kumar and Brennen (1991, 1992) and Kuhn de Chizelle et al. (1992), the nature
and consequences -of this deformation had not been examined. It is now clear that
the deformation and fission caused by the interaction of the bubble with the nearby
solid surface and with the pressure gradients and shear in the flow play a very im-
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Fig. 1. Isobars in the vicinity of the minimum pressure point on the axisymmetric Schiebe
headform with values of the pressure coeflicient, Cp, as indicated. The pressures were obtained
from a potential flow calculation. The insert shows the headform shape and the area that has
been enlarged in the main figure (dashed lines).

portant role in the dynamics and acoustics of travelling bubble cavitation. This
paper presents the results of one effort to model some aspects of that interaction.

The papers by van der Meulen and van Renesse (1989), Ceccio and Brennen
(1991) and Kuhn de Chizelle et al. (1992) constitute an extended series of observa-
tions of travelling cavitation bubbles in the flow around axisymmetric headforms
and reveal a rich complexity in the “microfluidmechanics” associated with the in-
teractions between the bubbles, the solid surface and the flow. The experiments of
Ceccio and Brennen and of Kuhn de Chizelle et al. utilized axisymmetric head-
forms typified by the “Schiebe” body whose approximate shape is shown in figure
1 along with the details of the isobars in the low pressure region according to a
potential flow analysis. The coefficient of pressure, C,, is defined in the usual way
as Cp = 2(p—Peo )/ pU? where U is the tunnel velocity, p the liquid density, and p.,
and p are respectively the tunnel pressure and the local pressure. Note the large
pressure gradient normal to the surface in the vicinity of the minimum pressure
point which contributes to the bubble deformation.

Typical photographs of bubbles during the growth and collapse cycle are shown
in figure 2 taken from Ceccio and Brennen (1991); they are all for the same cavi-
tation number, o, defined in the usual way as ¢ = 2(p,, — p, )/pU? where p, is the
vapor pressure. For most of its cycle, the bubble has approximately a spherical
cap shape, the bubble being separated from the headform surface by a thin layer
of liquid which is of the same order of magnitude as the boundary layer thickness.
As the bubble begins to enter the region of adverse pressure gradient the outer
front surface begins to be pushed inward causing the profile of the bubble to ap-
pear wedge-like. Thus the collapse is initiated on this outer front surface of the
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Fig. 2. A series of photographs illustrating the growth and collapse of travelling cavitation
bubbles in a flow around a 5.08 cm diameter Schiebe headform at o = 0.45 and a speed of 9
m/s. Tunnel blockage effects imply an effective & = 0.40. Simultaneous profile and plan views
are presented but each row is, in fact, a different bubble. The flow is from right to left and the
scale is 4.5 times lifesize. From Ceccio and Brennen (1991).
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bubble and this often leads to the bubble fissioning prior to collapse (as seen in
the third row of figure 2). Two other processes are occurring at the same time.
First, the streamwise thickness of the bubble decreases faster than its spanwise
breadth so that the major dimension of the bubble is normal to the direction of
flow and parallel to the headform surface. Second, the spanwise vorticity which
has been acquired by the bubble during its earlier growth phase is now being con-
centrated as the bubble collapses so that the bubble evolves into one or two (or
possibly more) hybrid vortex/bubbles with spanwise axes. These vortex/bubbles
proceed to collapse and seem to rebound as a cloud of much smaller bubbles (last
row, figure 2). Often a coherent second collapse of this cloud was observed when
the bubbles were not too scattered by the flow. Ceccio and Brennen (1991) (see
also Kumar and Brennen 1993) conclude that the flow-induced fission prior to col-
lapse can have a substantial effect on the noise impulse produced by this kind of
cavitation event.

Ceccio and Brennen (1991) and Kuhn de Chizelle et al. (1992) observed several
other important interaction phenomena. Sometimes the thin liquid layer under
the bubble would become unstable and this would lead to another kind of fission
in which a bubbly layer is stripped from the underside of the bubble. Also, the
bubble can trigger a region of attached cavitation in its wake as it passes the
minimum pressure location. This latter phenomenon becomes much commoner as
the Reynolds number increases and leads to important scaling effects on cavitation
noise.

2 Computational Algorithm

The present paper focuses on the interaction of the bubble with the irrotational
flow exterior to the boundary layer. Specifically it is directed toward an under-
standing of the exterior shape of the bubble. Clearly, other viscous flow analyses
are needed in order to understand the phenomena of the liquid layer instability
and the triggering of attached cavitation. It is, of course, possible to solve the
inviscid, irrotational problem by using a boundary integral method in which the
surface of the headform and the surface of the bubble are divided into bound-
ary elements. Indeed, Chahine (1992) made some preliminary calculations of this
kind. We believe the approximate method presented here has the advantage of
improved resolution of the bubble dynamics at much reduced computational time.
It could also be extended to allow studies involving more than one bubble so that
interaction effects might be examined.

Oune of the basic, simplifying assumptions behind the current model is that the
perturbations in the irrotational flow caused by the bubble can be fairly accurately
modelled by a simple travelling source of adjustable intensity and position and that,
once an.image source is added to substantially satisfy the boundary condition on
the headform surface, the remaining corrections which are required involve small
modifications of the basic structure of the flow. Ounly a brief account of the model
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will be given here; for further details the reader is referred to Kuhn de Chizelle
(1993). In brief, the numerical model combines the following elements:

1. The oncoming uniform stream of velocity, U, whose velocity potential at a
point, C, in the fluid whose cylindrical coordinates are (7., xz.)is Uz..

2. A series (¢ = 1 to N,) of axisymmetric ring panels of normalized strength,
i, and radius, r,;, on the surface of the headform (diameter, D). The axial
coordinates of the end points of each panel are denoted by z; and z;,;. The
induced velocity potential, ¢,;, due to one of these ring panels at a point, C,
in the fluid whose cylindrical coordinates are (7., z.) is (Kellogg 1953)

Titl T do ;
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The present calculations used 93 rings with a special concentration in the low
pressure region.

3. A point source of time-varying intensity, ¢(t), placed at some chosen location,
(rg,24),in the § = 0 plane of symmetry. This source, which is used to simulate
the bubble, induces a velocity potential, ¢,, at any point, C, where

¢q = qu(Tm 9(’.7 .’Ec) = _Q/47rdqc (2)
where d,. is the distance between the source and the point C.

4. An image source of identical strength placed inside the headform at the image
point which is equidistant from the headform surface. The line joining the
source and its image must be a normal to the headform surface. The potential
due to this image is denoted by ¢; = A, (r.,0.,z.).

Then the combined velocity potential for the entire flow, ¢, is given by

Ny
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and, provided ¢, r, and z, are known, the entire flow field can be solved by
conventional means by using the condition that the normal velocity be zero in
the center of each of the N, ring panels. These N, conditions determine the N,
unknowns, p;, 2 = 1 to N,. In the current program a standard orthogonalization
procedure was used for this purpose.

The program begins when a stable nucleus of specified size, Ry, is introduced far
upstream of the headform on a specific streamline at a chosen radius from the axis.
Since little of current interest occurs until the bubble reaches neutral equilibrium,
we simply jump quasistatically forward to the position on that same streamline at
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Fig. 3. Schematic showing the mid-plane profile of a bubble and the notation used in treating
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which the nucleus first becomes unstable (Blake 1948) and will then begin to grow
explosively. This position is located in the low pressure region downstream of the
point where p = p, or C, = —o.

The surface of the bubble is a material surface within the flow and its evolution is
tracked in the following way (see figure 3). The mid-plane profile is defined at each
time step by N, equidistant marker nodes (N, = 45 in the current calculations).
The fluid velocity at each of these marker nodes is calculated from the solution of
equation 3 and the profile at the next time step is obtained using displacements
which are the fluid velocities multiplied by the time increment. The rest of the
three-dimensional geometry of the bubble can be tracked in the same way. It
follows that the kinematic condition on the bubble surface is quite accurately
satisfied.

Now for the dynamic condition on the surface of the bubble. At each time step
the liquid pressure on the exterior of the bubble surface can be calculated from
the solution of equation 3 using the unsteady Bernoulli equation. We denote this
by a coefficient of pressure, Cpy;, j = 1 to Ny, for each of the marker nodes. Then
the dynamic condition requires that this be equal to a pressure calculated knowing
the surface tension, S, the vapor pressure and the partial pressure of air inside the
bubble; this leads to terms which are very similar to those of the Rayleigh-Plesset
equation for spherical bubbles and to a pressure coefficient, Cpy;, 7 = 1 to N, for
each marker node given by

4D Vol® 4D 4D {31} }
C L= — - _ ny 4
i = {a * RoWe} { V} R,We | Uke | on, (4)

where We = pU?D/S, Re = UD/v, v is the kinematic viscosity of the liquid,
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V and V, are the current and initial volumes of the bubble, & is the polytropic
constant for the air (1.4 is used in the present calculation) and R;, v,; and n; are
respectively the radius of curvature of the bubble surface, the velocity normal to
the surface and the surface normal at the marker node j. The dynamic surface
condition at each marker node is therefore C,;; = C,;.

The program chooses both the strength, g, of the source and its location, (7, z,),
so as to minimize three integral properties involving the residuals |Cpy — Cppjl.
Thus the dynamic conditions are only satisfied in an approximate, averaged sense.
It is clearly possible for the method to be extended and improved by the intro-
duction of some other source variables such as would be created by the addition
of higher order singularities. A corresponding number of other, higher order mo-
ments of |Cpj — Cpyj| could then be minimized. In this paper we demonstrate that
the three variables involved in using a simple source provide remarkably accurate
information on the bubble shape dynamics.

In the current calculations an iterative procedure is used at each time step
to determine the optimal values of ¢, r, and z,. Assuming a particular source
location, a new value of ¢ and a displacement vector, d, of the location of the
source are computed using:

Ny Ny Ny AC 17 AC i N
OO E N UIFUENE UE < VO SNC
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where ¢; is the source strength which would exactly satisfy the dynamic condition
at the jth marker node, §; is the normal distance of the marker node from the
headform surface, s; is a coordinate along a line from the source to the jth node (k,;
is a unit vector in the same direction) and AC,;; /Aq and ACy;; /As; are derivatives
of Cp;; with respect to the source strength and with respect to displacement of the
source in the direction of s;. The source is then displaced by d and the calculation
repeated; usually three iterations were sufficient for convergence. Clearly, weighted
summations could be chosen which would be different from those of equations 5
but tests showed that the above choice was reasonably effective.

This summarizes the basic elements of the computational method. A few ad-
ditional features should be mentioned in passing. (i) As with many free surface
problems, there is an inherent numerical instability which sometimes develops in
which spatially alternating errors accumulate at the locations of the surface marker
nodes. These alternating deformations had to be artificially damped. (ii) Tests
showed that the modifications to the ring panel intensities caused by the pres-
ence of the bubble were very small and that the bubble dynamics were virtually
unchanged when the ¢ terms in equation 3 were omitted. This leads to major
computational savings since the values of y; need only be determined once at the
beginning of the computation. (iii) We have not attempted a complete review of
all the approximations and error evaluations in this brief account. For example, a
more accurate approach might involve dividing the ring panels into circumferen-
tial elements having different intensities rather than the circumferentially uniform
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Fig. 4. Evolution of the increment in the pressure coefficient on a surface 1/100th of a headform
diameter into the flow from the headform surface. The white object is the contour occupied by
the bubble. The cavitation number 1s 0.45.

intensity currently assumed. It transpires that the computational expense of such
a refinement is not merited by the marginal improvement in accuracy. These and
other error evaluations are detailed in Kuhn de Chizelle (1993).

Finally we emphasize that the basic three parameter version of the algorithm
described above can only be expected to model the simpler features of the bub-
ble geometry and not the complex features associated with a well-developed re-
entrant jet. This would require the addition of several more source parameters; an
improvement that would be relatively straightforward.

3 Results

Information on how the perturbations to the flow change with time can be pre-
sented in the form shown in figure 4 which illustrates the evolution of the incremen-
tal coefficient of pressure caused by the bubble. The figure plots the incremental
pressure coefficient on a surface which is parallel to the headform surface a spe-
cific distance into the flow (in this case 1/100th of a headform diameter). Note the
positive incremental pressures surrounding the bubble as it grows and the negative
incremental pressures as it collapses. The final stage of collapse is characterized by
a large positive incremental pressure corresponding to the collapse noise spike. For
much more information see Kuhn de Chizelle (1993). Such data allow evaluation
of the potential for bubble/bubble interactions in more developed cavity lows and
of the unsteady pressure distribution acting on the boundary layer.
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+ +

Fig. 5. Comparison between the experimentally observed profiles of the bubbles in Fig. 2
(dashed lines) and the profiles calculated by the three parameter version of the current algorithm
(solid lines). The locations of the source and the image source are shown by the crosses.

4 Comparison with experiments

In figure 5 the experimental bubble profiles of figure 2 are compared with the
profiles computed by the three parameter version of the current program at the
same five moments in time (labelled 1 to 5) during the bubble evolution. It can be
seen that the overall size of the bubbles are in good agreement with the observations
and that there is qualitative agreement in the general shape of the bubble as well
as the way it changes with time. Clearly the program reproduces the spherical cap
shapes which are separated from the headform by a thin liquid layer. During the
growth phase we note a minor depression in the top of the cap which is reminiscent’
of the dimples on the top of the bubbles observed by Kuhn de Chizelle et al. (1992)
but not as pronounced. Later the bubble assumes the wedge-like shape similar to
the experiments. The largest discrepancy is that the computed bubbles are not as
elongated as those observed, particularly at the higher cavitation numbers. The
three parameter version of the present algorithm may not be able to handle such
large ‘departures from sphericity.

The overall dimensions can also be compared with those measured by Kuhn de
Chizelle et al. (1992) for bubbles on Schiebe headforms of different size. Figure
6 presents a comparison of the base radii of the observed and calculated bubbles
as a function of the cavitation number. Note that in this figure the dimensions of
the bubbles on the smallest headform could not be measured very accurately and
therefore the data with the dotted lines should be regarded as much less reliable.
The agreement with most of the data is quite satisfactory and shows a significant
deviation from the radius of a spherical, Rayleigh-Plesset bubble calculated using
the surface pressure distribution. The sphericity of the bubbles defined as the
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Fig. 6. The maximum radius of the base of the cavitation bubbles (normalized by D) and their
sphericity as functions of the cavitation number, . Data from Kuhn de Chizelle et al. (1992) for
three headform diameters (50.8 cm = thick solid line, 25.4 cm = thin solid line, 5.08 cm = dotted
line) at three different tunnel velocities (9 m/s = A, 11.5 m/s = o, 15 m/s = O). The present
calculations are shown by the solid line (with e). The results of a Rayleigh-Plesset calculation
are also shown.

ratio of their maximum thickness normal to the headform surface divided by the
maximum base radius is also shown in figure 6. Here again there is good agreement
between the observations and the calculations but only for the lower cavitation
numbers where the sphericity is large. As previously discussed, the experimental
bubbles at the larger cavitation numbers are significantly flatter.

5 Conclusions

This paper presents a method for calculating the interaction between a travelling
cavitation bubble and an irrotational flow field. Conventional boundary integral
methods for the basic steady flow past a solid body are supplemented by a pro-
cedure which simulates a travelling cavitation bubble. This bubble interacts with
the body and is deformed by the large pressure gradients in the vicinity of the min-
imum pressure point on the body surface. It is demonstrated that a simple model
for the bubble consisting of a source/sink of varying intensity and location, when
combined with an identical image source, provides a surprisingly accurate repre-
sentation for this complicated unsteady flow. The method is applied to travelling
cavitation bubbles in the flow around an axisymmetric headform (a Schiebe body)
and the results are compared with the experimental observations of Ceccio and
Brennen (1991). The calculated bubble shapes are very similar to those observed
experimentally and the calculations permit an understanding of the way in which
the bubble alters the flow. Since the method is quite modest in its computational
requirements, further studies may include the use of the model to study the in-
teractions between bubbles when several are introduced to the flow. The present
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solutions also provide a necessary prerequisite for the study of the unsteady vis-
cous interactions between the bubble and the boundary layer, a study which is
clearly required in order to understand some of the other interactions observed
experimentally by Ceccio and Brennen (1991) and Kuhn de Chizelle et al. (1992).
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