International Symposium on Cavitation, CA4V 95, May 1995, Deauville, FRANCE

STABILITY OF PARALLEL BUBBLY AND CAVITATING FLOWS

by

Luca d’AGOSTINO
Fabrizio d’AURIA

University of Pisa
PISA - ITALY

&
Christopher E. BRENNEN

California Institute of Technology
PASADENA - USA

ABSTRACT

This paper examines the bubble dynamic etfects on the stability of parallel bubbly and cavitating flows of low void fraction.
Inertial effects associaled with the bubble response and cnergy dissipation duc to the viscosity of the liquid, the heal transfer
between the two phases, and the liquid compressibility are included. The equations of motion are linearized for small
perturbations and a modified Raylcigh equation for the inviscid stability of the two-dimensional parallel flow is derived.
Numerical solutions of the characteristic problem for the modified Rayleigh equation of a frec shear layer are obtained by
means of a multiple shooting method. Depending on the dispersion of the gaseous phase in the bubbly mixture, the ambient
pressure and the free stream velocities, the presence of air bubbles can induce significant departures from the classical solution

for a single phase fluid. Results are presented to illustrate the influence of the relevant flow parameters.

1. INTRODUCTION

The central role played by the stability of parallel
flows in the analysis of a wide class of flow configurations
(shear laycrs, boundary laycrs, jets, wakes, internal flows,
etc.) 1s well documented in literature [16, 19, Both
incompressible and compressible homogencous fluids have
been investigated in a wide varicty of configurations [2,
10]. Recently the stability of two-phase {luids has begun (0
be investigated, particularly in the context of liquid-solid
suspensions [12, 17, and 20].

In the present paper we consider the problem of the
inviscid stability of parallel bubbly and cavitating flows
when effects associated with the dynamic response ol the
bubbles are taken into account. Even at very low void
fractions, the presence of the bubbles drastically modilics
the dynamic properties of the liquid such as the acoustic
speed. Quite complex interactions can occur between the
mean {low and the comphiant, inertial and dissipatve nature
of the bubble dynamics [14, 15]. In particular, incriial
effects in the bubble dynamics become important when the
unstable frequencies of the flow approach the natural
frequency ol oscillation ol individual bubbles. Then the
bubbly mixture no longer behaves like a compressible
barotropic fluid and signilicant deviations from the classical
compressible {low solution are 10 be expected. A more
detailed understanding of the phenomena associated with the
bubble response is theretfore necessary in order w improve

the prediction, scaling, and control of the stability of

parallel flows. Moreover, cxperiments have shown that the
wrbulent transition, noisc spectrum, and the bubble
response depend on the free stream velocity and pressurc in
parallel {lows with traveling bubble cavitation {1, 3].

This paper is a natural extension of previous work
on the dynamics of bubbly flows [6, 7, and 8] and utilizes
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the same system of equations. The linearized perturbation
cquations for a bubbly mixture are derived and some
preliminary results arc presented for the inviscid stability of
two-dimensional unbounded shear laycrs. The computed
cigenvalues clearly exhibit significant deviations from the
single-phasc, incompressible flow solutions for the flow
parameclers Lypical ol low pressure bubbly and cavitating
flows.

2. GOVERNING EQUATIONS

The basic cquations used are described by
d’Agostino et al. |4, 5, and 6]. Il u is the velocity of the
hiquid, with pressure, p, unperturbed density, p, speed of
sound, ¢, and bubble concentration, 8, per unit liquid
volume, the continuity equation [or the mixture (neglecting
the mass of the bubbles) can be written as:

0 1Y) _1 pp
1+8t Dt pc* Dt
where D/Di=d/di+u-V is the Lagrangian time

derivative, and 7=47R*/3 is the volume of a bubble,
assumed spherical with radius, R(x,¢). Note that the void
fracuon, a:,BT/(1+[31), 1s assumed to be very small
compared with unity. We shall neglect the relative motion
between the bubbles and the liquid; an approximate
cvaluation of this effect by d’Agostino et al. [8] suggests
that it 1s small. If the relative motion is negligible and the
initial population, B, is uniform, then B is a simple
conslant in the bubbly fluid. Then, neglecting body forces
and viscous elfects in the large-scale flow, the momentum
equation for the fluid motion becomes:
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The bubble radius is determined by the Rayleigh-Plesset
equation modified as indicated by Prosperctii [15] to account
for the effects of liquid compressibility in the bubble

dynamics:
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where the Lagrangian time derivatives follow the bubbles,
and p.(f} is the liquid pressurc at the bubble surface. This
1s related to the pressure, p,, in the bubble (assumed
uniform) by

. .28 1 DR
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where § is the surface tension at the bubble interface and u
is the viscosity of the liquid. Clearly, for the closure of the
problem, the above cquations must be supplemented by the
mcchanical and thermal equations of state and by (he energy
conservation cquations for the two phases with the relevant
boundary conditions. In the present work we shall use an
“effective” viscosity, p, which, in addition o the liqud
viscosity, includes contributions to the bubble damping due
to thermal and acoustic effcets (4).

3. LINEAR STABILITY EQUATIONS

We now construct the cquations governing the
stability of a two-dimensional parallel flow. The continuity
and momentum cquations of the two phases are separated
into mean values and small lincar perturbations denoted by
a hat accent:

(ex an) ) i(kx wn)

u=U{(y)+u{y)e v=1v{y)e

p=p,+p(y)e™ @ and R= R, +R{y)e™

where @ and & are the perturbation frequency and wave
number, respectively. Then, in the limit of small void
fracuion, cquation (1) is lingarized 10 give:

&)

A, ¢ 2R [
iku+v' = —iw, —R+1w, —p
"R pe

while equation (2) yields the two scalar equations:

©) pll - a)~iwa~UW) = ~ikp

€ pll- a)iw,v=p’
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where w, =w—-kU is the Lagrangian {requency
cxperienced by the bubbles in their motion relative to the
mean flow, and primes indicate differentiation with respect
to the independent variable y.

The perturbation terms in the Rayleigh-Plesset
equation yicld the following relation:

®)

. 14 N/
(—0® —iw2h rwp)R=— 1 +iw R, )L
\ ¢ /PR,

in which ii can be obscrved that each individual bubble
behaves as an harmonic oscillator with natural frequency,
@y [15]. The internal bubble pressure is

)] Pe(t) = pgo 4 pplt) = pﬂa(1—¢R/Ra)'
The reader is referred o d’Agostino and Brennen [7] for a
detailed explanation of the terms appearing in the above
expressions. Here we only mention that the damping
cociticienmy, A, 1s given by the sum of three ierms
accounting for the viscous, acoustical, and thermal
dissipation. The quantity, Re(¢), can be regarded as the
cffective polytropic cxponent of the gas in the bubble. It,
respectively, tends 1o 1 and 1o the ratio of the specific heats,
v, in the isothermal and iscntropic limits as @ -- 0 and
W — ~oo, i

Elimination of R and p (rom cquations (5), (6),
(7), and (8) yields the following system of equations
governing the inviscid stability of a bubbly flow (and
¢quivalent to a modificd Rayleigh equation):

, . - J7 . ‘ R -
(1) u' = ikv il—v—ii,—(iw,‘u—lj'v)
w, ke,
R N T T
(H V= —iky +—= (+m),_u ~-U")
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Here ¢,, = ¢, (@, ) is the complex and dispersive (frequency
dependent) speed of propagation of an harmonic disturbance
ol angular frequency, @, , in the bubbly mixture. This is
detenmined by the dispersion relation, where

(12) 1w, 1+iR jc l-a
- ¢l wl- e iw2d ¢
where
. 3p 25 R
\13) (L);{(; = —/"1.?— — and Ci’q = _QB_"._U_
pR: PR’ ’ 3a(l- )

W4, 15 the natural frequency of oscillation of a single
bubble under 1sothermal conditions in an unbounded liquid
and ¢,,, 15 the low-frequency sound speed in a free bubbly
flow with mcompressible liguid {(©, -0 and ¢ — «).
Notice that we obtain the classical Rayleigh stability
cquation for a homogencous fluid by eliminating the
velocity component 2 from equations (10) and (11), and
SCUing ¢, — oo,

For the closure of thc mathematcal problem,
cquations (10) and (11) must be supplemented by two



appropriate boundary conditions for # or v for the specific
flow configuration under consideration. As will be seen
below, this leads to a linear, second order eigenvalue
problem for the free parameters @ or k. Just as in the
homogeneous fluid formulation, the set of admissible
(generally complex) values of @ or & (the cigenvalues) is
uniquely determined by the condition that the corresponding
nontrivial solutions (the eigenfunctions) salisly the
assigned boundary conditions. Any Lwo of the real and
imaginary parts of the complex [requency and wave number
can be specified and the remaining parts are then delermined.
Spatially growing oscillations are studied by assigning the
real frequency, @, and solving for the complex wave
number, £, which is the eigenvalue of the problem; the
imaginary part of, k£, namely &, is the spatial attcnuation
rate of the perturbation while its real part is the wave
number. A negative value of k; therefore implics
amplification of the perturbation. On the other hand
temporally growing oscillations are studied by assigning a
real value to £ and solving for the complex ©. The two
cases become identical at neutral stability.

4. INVISCID STABILITY OF SHEAR
LAYERS

In order to illustrate the impact of bubble dynamic
effects on the stability of parallel flows, we consider the
simple classical case of a (two-dimensional inviscid free
shear layer between Lwo parallel streams of velocities U,
(y<0)and U, (y>0). It is assumed that thc unperturbed
velocity profile can be approximated by the hyperbolic
tangent profile:

U +Uy U, - U,
2 2

U(y)=

lanhy

Inside the shear laycr the equations governing the
perturbations must, in general, be integratcd fiumecrically.
Outside of the shear layer, where U, ,, and c¢,, arc
constant, the perturbation equations rcduce 1o

2
.-
2 123
Cy

and V= —thu+ i

2
+ (kz s 2 J&: 0
Car

and can be integrated in closed form to obtain

1 = ikv

or

2,242
\;:A ze,ry\/k «wL/L,

ik
v Vi —wl/cl

where A, are arbitrary complex constants, the complex
Square rool is compuled with its principal branch, and the
appropriate sign is determined by requiring that the solution
not diverge as y — *eo. From the practical standpoint, the
stability problem is first ransformed into a boundary valuc

¢ Wk wlfel,

u=tA
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problem on —nd <y < nd by assigning zero derivatives to
the eigenvalucs with respect to y within the integration
range. The boundary value problem is then solved
numerically using a multiple shooting method [18]. The
integration is carried out with a fourth-order Runge-Kutta
method (extrapolated to the fifth order), with self-adaptive
step-sizc for meeting the required accuracy. Finally, the
eigenvalues are correcled using a multidimensional modified
Newlon-Raphson method, in order (o improve the
convergence of the algorithm. The codce has been validated
against the results reported by Beichov and Criminale [2]
and Michalke [13] for both the spatially and temporally
growing oscillations in single phase flow.

The computation starts with some tentative
candidate for the complex cigenvalue, £, in the case of
spatial stability calculations. The arbitrary constant, A, is
chosen (o give the simple initial conditions at y=—nd
(n>>1)

ik

VK — @ /ey,

‘2:

and

<
1
—

The cquations arc then lmcgraled from y=-nd to y=nd,
where the computed values of # or v must be continuous
with the upper asymptotic solution. Therefore, at y = nd,
the condition:

ik .

VEE -]/,

must be satisfied. This relation is then used to iteralively
correct the assumed complex eigenvalue and the process is
repeated 1o convergence.

h=-

5. RESULTS AND DISCUSSION

In this paper, wc present results for the spatial
stability characteristics of a free shear layer involving a
mixturc ol air bubbles (y=14) and water
(p=1000 kg/m’>, ©=0.001Ns/m*, §=0.0728N/m,
¢ = 1485 m/s). The results are presented in dimensionless
form by using the shear layer velocity difference, AU, and
width, &, for the non-dimensionalizing velocity and length.
The nondimensional quantities will be denoted by an
asterisk.

The three nondimensional paramcters in the
present analysis are the bubble natural frequency, @y, , the
bubblc radius, R, and the void fraction, «. When the
bubblc natural frequency, a),m, 1s large compared Lo the
perturbation frequency, @”, the effect of uniformly
dispersed bubbles on the stability characteristics of the
hquid 15 negligible. Thl\ Is true no matier how high the
void lracuon .

For values of w,, closer 10 " the bubble
dynamic clfecets begin o modily the stability characteristics
of the flow. This is illustrated in Fig. 1, where the
attenuation rale, given by the imaginary part of the wave
number, k,, is plotted as function the perturbation
frequency, @, for a void fraction, e, of 0.005 anda
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Figure 1. The attenuation rate (k) as a function ol the
frequency, @, for a void fraction of & = 0.005 and various
bubble natural frequencics: wp, =4.4, @y =2.2,
w,, = 1.7, and wy, = 1.35 Also shown is the single-phasc
flow result.

bubble radius R™ of 0.05. 1t is readily secn that the
bubbles have a stabilizing effect and the closer the two
frequencies the greater the stabilizing ellect. Furthcrmore
the most unstable frequency shifts lowards smaller values
(the most unstable frequency for the single-phase fluid is
" =0.206692 [13]).

The effects of the other flow parameters, namely
the bubble radius, R, and the void fraction, a, have also
been investigated. The effect of the bubble radius is shown
in Figure 2, where the maximum amplification rate is
plotted as a function of the natural frequency of the bubble,
g, . An increase in radius is shown 10 be destabilizing.
Figure 3 illustrales the stabilizing cffect of an increase in
the void fraction. Figurc 4 shows the decrease in the most
unstable frequency, @, with the bubble natural frequency,
W}, , for different values of the void fraction. The effect of
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Figure 2. The most unstable aticnuation rale () as 4
function of the bubble nawral freguency, w,,, lor
a=0.005,and R =0.05 R =0.15 and R" =03 .
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Figure 3. The mosl unslable atlenualion rate (k) as a
function of the bubble natural frequency, @,,, for
o =0.001, =0.005, a=0.0l.

the bubble natural {requency, @y, on the phase velocity,
defined as ¢, = w"/k, , is illustrated in Figure 5.

Figures 1, 2, 3, 4, and 5 are pertinent Lo those
situations n which the magnitude of the bubble resonance
frequency is considerably higher than the most unstable
frequency for the single phase flow. Such sitnations are
morc likely 10 be found in practical applications. From this
we deduce that bubble dynamic effects play a secondary role
in this kind of flow, when compared to compressibility
effects.

Other computations were carried out O examine
the role played by bubble dynamics al or near resonance
(@ = wy,). Figure 6 illustrales the bubble dynamic effects
for « = 0002 for several bubble natural frequencies. It can
b seen that the atenuaion fae does aot wailonuly ncrease
with the bubble natural frequency. Depending on the value
ol the perturbanion frequency, {lows characlerized by a lower
bubble natural frequency can be less stable than others. This

0.25
w,
go b o= 0.001
0.15 \
o = 0.005
0.1 F o =0.01
0.05 b
() i, 1 —_—1 . i N 1 )
) 2 4 6 8 10 12 14

wBO
Figurc 4. The frequency, w,,, corresponding 1o most
unstable attenuation rate, as a function of the bubble natural

frequency, @, , for a=0.001, a=0.005,and a=0.01.
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Figurc 5. The phasc velocity, ¢, as a function of the
excitation frcquency, @', for @y =4.4, wy =2.2,
0y = 1.7, and @y, =1.35 Also shown is the single-phasc
flow result.
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decreasing w,,

is a conscquence of the fact that the most unstable frequency
for a particular flow incrcases as the bubble natural
frequency, wp,, decreases. The effect of resonance 1s shown
in Fig. 7 where, in the absence of the thermal and acoustic
contributions Lo the damping, the strong stabilizing effect
in the region around " = @y, can be clearly scen. This
figurc also shows the importance of accurate modeling of
the bubble damping.

From a practical point of view, the most unstable
flow remains the onc with thc highest bubble natural
frequency. We conclude that bubble dynamic cifects at
resonance do not significantly modify the gencral trends
observed for non-rcsonant conditions. They represent a
secondary contribution when compared to  the
compressibility effccts.
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Figure 6. Data illustrating the effect of bubble resonant
behavior (@™ = w},). The atienuation rate (k) is shown as
a function of the perturbation frequency, w”, for
w;JO =().31 R (0;() = ()22, (U;}() = ()]8. and (U/‘w =0.14.
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Figurc 7. Data illustrating the effect of bubble damping.
The atlenuation rate (&) as a function of the perturbation
frequency, @™, for bubble with total damping (T.D.) and
bubble with only viscous damping (V.D.)

6. CONCLUSIONS

The stability of parallel bubbly flows can deviate
significantly from the single-phase flow results. Normally,
the bubbly mixture is more stable than the single phase
fluid. This stabilizing effect is enhanced as the void fraction
increases and the bubble radius decreases. These effects are
primarily the result of the compressibility of the bubbly
mixture. Bubble dynainics are found lo play a secondary
role. The rcason for this scems (o be twofold. First, Lypical
values of the shear layer width and velocity difference in
practical applications arc such that the bubble natural
frequency and the most unstable frequency are very different.
Second. even when the flow parameters are such that the
resonance oceurs in the unstable region of the eigenvalue
spectrum, the most unstable frequencics of the flow remain
virtually unchanged.

It 1s interesting Lo note that the stabilizing effect
due 1o the presence of a dispersed phase in the homogeneous
fluid is somewhat similar 1o the stabilizing effect due to the
particle/particle interaction in suspensions identified by
Yang et al. [20]. The enhanced stability with increasing
void fraction, o, observed in the present calculations is
also similar to the trend in Yang et al. On the other hand,
the computations of Yang et «f. show no appreciable shift
in the most unstable frequency, as the basic parameters of
the gas-particle mixwre vary.

It is important to mention that one of the basic
trends shown by our numerical results is in agreement with
the experiments of Gates [11]. He observed thal laminar
scparation of the boundary layer on a hemispherical-nosed
body was delayed and ultimately eliminated by increasing
the number of small bubbles or nuclei present in the
oncoming streamn. The current results agree with Gates’
conclusion that the delay in separation was not caused by
the “turbulence’ produced by the bubbles. Rather, the
bubbles alter the pressure distribution in such a way as to
delay separation.
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