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ABSTRACT

Realistic cavitating flows are dominated by a large num-
ber of interacting bubbles. These clouds of bubbles exhibit
highly nonlinear behavior with sudden changes in void frac-
tion. Because of the potential damage caused by the co-
herent collapse of bubble clouds, there is a need for ef-
fective numerical models to predict their behavior. This
paper presents a newly developed computational method-
ology to solve a continuum model of bubbly cavitating flow
in which a Lagrangian finite volume techniquc is used to
accurately and efficiently track all flow variables in space
and time. We also present resuits for the solution of a one-
dimensional model problem, namely cavitating shock waves
produced by the normal motion of a wall bounding a scmi-
infinite domain of fluid. The roles of wave steepening and
damping mechanisms in the collapse of bubble clouds are
highlighted.

INTRODUCTION

The violent effects of the nonlinear dynanics of cavi-
tation bubbles and clouds of such bubbles include intense
noise radiation and material damage. Despite the negative
consequences, neither quantitative nor qualitative predic-
tion of these effects is presently possible for realistic cavi-
tating flows.

* Address all correspondence to this author.

The nonlinear growth and collapse of a single gas-phase
bubble in a liguid has been widely investigated and different
modes of bubble collapse ncar solid boundaries have been
identified. However, the fluid dynamics associated with re-
alistic cavitating flows is often dominated by interactions
of a large number of bubbles. It has been proposed that
such interactions, including thie collapse of clusters of cavi-
tation bubbles, are responsible for cavitation damage (Vyas
& Preece 1974, Hansson & Mgrch 1980, 1982, Mgrch 1980).
More recent work has catalogued some of the key phenom-
ena associated with clouds of cavitation bubbles (d’Agostino
& Brennen 1983, 1989, Smercka & Banerjee 1988, Omta
1992, van Wijngaarden & Buist 1992, Kumar & Brennen
1993b, 1993a, Wang 1996, Reisman 1997). For example the
calculations of nonlinear bubble cloud dynamics by Wang
and Brennen (1994, 1995, 1996) show clearly that the col-
lapse of a cloud of bubbles involves the formation of a shock
wave which, under certain circumstances, propagates in-
ward through the cloud. Geometric focusing leads to very
large local pressures and suggests the potential for severe
noise and damage.

In this paper we present the details of a computational
methodelogy which has been explicitly developed and re-
fined for the purpose of accurately and efficiently comput-
ing bubbly cavitating flow. The highly nonlinear dynam-
ics of clouds of cavitation bubbles can lead to a variety of
difficulties with the numerical model. These include stiff-
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ness due to the very short time scale associated with vi-
olent collapse, Lagrangian tracking of the flow variables,
the resolution of unsteady (propagating) shock waves, and
the accurate modeling of damping mechanisms during the
collapse of bubble clouds. In the next section we discuss
the continuum modeling of clouds of cavitation bubbles, in-
cluding the development of a new nonreflecting boundary
condition which attempts to model the free space problem
on a finite computational domain. The numerical method
and its validation follow. As a first application we consider
a transient problem in one spatial dimension, namely the
cavitation caused by normal motion of a wall bounding a
semi-infinite domain of fluid.

PHYSICAL MODELING

We consider a continuum bubbly flow model
(d’Agostino & Brennen 1983, 1989, Biesheuvel & van
Wijngaarden 1984). The equations and simplifying as-
sumptions and their justification are briefly described here
— Brennen (1995) should be consulted for more detailed
discussion of the derivation.

Key assumptions present in the continuum model are
that population of bubbles is fixed (neither fission nor fu-
sion occur), the liquid phase is incompressible, variations in
velocities and fluid properties occur on length scales large
compared to the bubble size, and that the bubble nuclei are
initially uniformly distributed in the flow. These assump-
tions lead to conservation equations for mass and momen-
tum of the bubbly mixture:

Dp 6ui _

ﬁ+p6zi = 0, (1)
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Note that viscous terms and gravity have been neglected
in the momentum equation. The typical bubble radius,
R(z,t), and therefore the void fraction, is governed by the
Rayleigh-Plesset equation:
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The system of equations is closed by noting that the as-
sumptions above lead to a relation between the density and

bubble radius:

a0R3 -1
p= (14222 @)

In Equations (1) to (4) p is the mixture density made di-
mensionless by the constant liquid density, p;,. Lengths, z;,
and the bubble radius, R, are normalized by an equilibrium
bubble radius Ry, the mixture velocity, u;, is normalized
by the bubble natural frequency, wg times the equilibrium
bubble radius, the pressure, P is measured relative to its
equilibrium value, pg, and normalized by ppr2w2. Time, t,
is normalized by 1/wg. Moreover, o is the cavitation num-

ber, defined as —f‘l’f:r’;"j, where p, is the vapor pressure.
2PLToYg

The ratio of specific heats is v. The effective damping for

spherical bubbles is denoted by dp and is discussed in de-
3, 2
tail below. The Weber number is given by We = p—[‘%?ﬂ

where S is the (constant) surface tension. Finally, it has
been assumed that any non-condensable gas in the bubbles
undergoes isentropic compressions and expansions.

One result of the way in which the equations have been
made dimensionless is that R=1, P=0, u=0, and p =
1 — a constitute a steady solution of equation (3), and this
is referred to as bubble equilibrium. For a slight disturbance
to this equilibrium state, bubbles will oscillate with their
natural frequency, wy, given by the solution as:

2 3yo
—By-1)+— =1,
W BT+ (5)

Since we typically consider We >> 1 and v = 1.4, we obtain
o= 0.47 (6)

In the present work we begin by deriving a numeri-
cal method for one dimensional flow. We consider a semi-
infinite region bounded by a flat moving wall. The bound-
ary condition for the wall is that the fluid velocity normal to
the wall is equal to the wall velocity. Below we specifically
consider sinusoidal motion of the wall given by:

U (Tw,t) = Asin (2m(¢/T)). (7)

This introduces two additional nondimensional parameters,
the amplitude, A, and the period of wall oscillation,T".
Often a semi-infinite domain can be treated numeri-
cally, at least for incompressible flow problems, by mapping
the infinite domain to a finite computational one. For com-
pressible flow problems which involve acoustic waves which
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propagate to infinity and decay only slowly (or not at all
in the case of one-dimensional inviscid flow), domain map-
pings are problematic since the waves become more and
more poorly resolved as they propagate through the highly
stretched mesh near infinity. In these types of problems,
therefore, the computational domain is usually truncated
at a finite location, and an artificial boundary condition is
imposed.

There is, of course, some ambiguity in posing such an
artificial boundary condition, and it is necessary to make
additional assumptions about the flow outside the region of
interest. Considering the one-dimensional flow next to the
vibrating wall, suppose that there is a finite region (slab) of
fluid which initially has a certain concentration of bubble
nuclei, and outside the slab there is pure liquid. If the liquid
is treated as strictly incompressible, this is tantamount to
placing a solid wall at the edge of the slab, since any one
dimensional motion of the (initially quiescent) flow outside
the slab would either violate the condition of incompress-
ibility (% =0) or cause infinite pressures.

However, real liquids have a small, but finite, compress-
ibility, and this allows certain disturbances to pass through
the interface between the bubbly slab of fluid and the pure
liquid. If we prevent this transmission of acoustic waves
to the pure liquid, then we will cause the bubbly layer to
resonate (that is, standing waves will form by repeated re-
flections within the bubbly slab). This situation can be
remedied, at least approximately, by posing a nonreflecting
boundary condition at the edge of the bubbly slab. The ba-
sic idea of nonreflecting boundary conditions is that all the
waves at the boundary are propagating out of the domain,
and the boundary condition should eliminate any incoming
waves.

For linear one dimensional hyperbolic (nondispersive)
systems it is possible to pose a nonreflecting boundary con-
dition by decomposing the solution into a set of decoupled
(characteristic) waves. In the present nonlinear problem, we
have the possibility of one-dimensional wave propagation,
but the waves are dispersive. Small amplitude disturbances
with frequency w and wavenumber k will propagate at a
speed

1

Equation (8) follows from the Fourier transform of the lin-
earized versions of Equations (1) to (4) (e.g. Brennen 1995).
Note that w is normalized by wo, k is normalized by 1/rq
and c is normalized by rywyp.

Furthermore, for small amplitude disturbances, it can
be shown that the Fourier amplitudes of the velocity and

pressure, 4 and p, respectively, are related by:
o= Z(w)*p, (9)
where Z(w)? is the “acoustic impedance”, given by

1
2

)
(10)
where the positive and negative roots corresponds to right-
going and left-going waves (and positive and negative phase
velocities), respectively. Thus at one boundary of the do-
main, a nonreflecting boundary condition is:

2wy = £(1 - aoje=+ (L2 (0f -1 - ius)

p=Z a4+ py, (11)

where we have added §; to allow the possibility of arbitrarily
specified incoming pressure disturbances. This equation is
nonlocal in time since it contains the square root of the
frequency. If the frequency is assumed to be small, then we
can approximate equation (11) by:

5DCO é)p
3 b;(zN,t) +pr, (12)

p(ml\h t) = POCOU(IEN,t) -

= 1 L
where Co —wﬂ(m)i'

NUMERICAL METHOD

Equations (1) through (4) are integrated using a one-
dimensional Lagrangian finite volume scheme in which each
control volume face moves at the local fluid velocity. The
Lagrangian framework is convenient for two reasons: first it
facilitates the application of the boundary condition at the
moving wall, and secondly, it allows the Rayleigh-Plesset
equation to be integrated (for a particular Lagrangian el-
ement) as an ordinary differential equation (ODE). The
method discretely conserves both mass and momentum.
Consider a one dimensional space divided into a collection
of N control volumes. Integrating Equations (1) and (2)

. over the control volumes .we obtain, for j =1,2,-.-, N —1:

d [+
s pdz =0, (13)
zj
d [t
pr / pudz = P; — Pj 1, (14)
<
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Equation (13) and equation (14) describe the rate of change
of the total mass and momentum in the jth control vol-
ume. Each of the faces (j =1,2,---,N) of the control voi-
ume moves with the loval fluid velocity and therefore

dz;
= =W (15)
where u; is shorthand for u(z;(t),t). Also, equation (3) can
be split into two first order equations at each face:

AT a0
dt
dR; .
2 -Vi=0, (17)

where

2
_ v -1 2 o1 pe3k
G;= —23- + 6pR;V; +——e(Rj - R;%)
(1-R;%k), (18)

a

3

Finally, the density and bubble radius at the faces are re-
lated by:

QQR? -1
pj = 1+1~a0) (19)

To integrate this system of (as yet exact) equations, it
remains to approximate the integrals in equations (13) and
(14). A. second-order approximation is uscd:

Ij 1 A .
/ U pde =S (- fa) 08, (20)

L

where AZ; =243 —;, and where f is any of R;V;, R;, or
M;.
’ Equations (13) to (19) are 6V —2 ODEs for 6N un-
knowns (p;, R;,V},x;,u;, and P; at the edges of the control
volumes, j =1,2,---,N). Specifying two boundary condi-
tions closes the system. At the moving solid wall the veloc-
ity u; is prescribed. The approximate nonreflecting bound-
ary condition derived above (equation (12)) is applied at
the other end of the computational domainu.

These equations are solved in the Lagrangian coordi-
nate system. Note that, depending on the solution, the
control volumes could become very small or very large. If
they become very large then the trapezoidal rule given in
equation (20) may not be accurate. In that case it may be
necessary to remesh the computation by interpolating the
Lagrangian quantities back to a regular grid.

An interesting feature of the discretized equations is
that an explicit time marching of the equations will not
conserve mass precisely. For explicit time marching, Equa-
tions (15) and (17) give x; and R; at the new time level.
Equation (19) then gives the density at the new time level,
and so in general, Equation (13) cannot be satisfied at the
new time level. This may be related to difficulties previous
investigators have encountered in solving similar equations
with explicit schemes — see, for example, Omta (1992) aud
Wang (1996).

For this reason (and the additional advantage of han-
dling stiffuess) an implicit time marching scheme is used.
The 1method chosen is a Richardson extrapolation method
based on the implicit Euler method. For a given time step,
a series of predictions are made for the solution at the new
time level based on different numbers of subdivisions of the
time interval. The series of predictions is then used to ex-
trapolated to the limit of zero time step, and to provide an
error estimate for the integration. The overall time step is
adjusted based on the number of subdivisions and the error
estimate. The details of the scheme are as given by Hairer
and Wanner (1996). Numerical experiments showed that
the extrapolation method is much more efficient than first
and second order implicit schemes.

The basic time advancement of the extrapolation
method is the implicit Euler method. For an ODE given
by:

df
Ly, (21)
the discrete form is:
fn+1 = fn +hfm+1, (22)

where £ is the timc step. Using this integration scheme on
Equations (13) to (19) and going through the algebra, we
can establish N equations of the form
Fj(Rp RV RN =0, j=12,--N, (23
which contain N unknowns, R}*!, for j =1,2,--,N. In
each equation F;, various parameters of the problem also
appear as well as the fields from previous time levels.
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To solve the nonlinear equations we use Newton’s
method !. For a system of nonlincar equations, we iter-
ate upon the equation:

N
Y Tik(8Be) = —Fj, (24)

i=1

First, F is evaluated with a guessed value of R;”'l. The

. . F; o .
Jacobian matrix Ji = 2% s found and the resulting sys-
i 3Ry

tem of linear equations is solved for §Rj. This correction
is added to the guessed R;.“"l, new values for F and J are
computed and the procedure continues until F is reduced
to near zero such that equations (23) are solved. In the
present case, the matrix J is tridiagonal in form and so
equation (24) is easily (and rapidly) solved.

Finally, the stability of the above numerical scheme
was analyzed using the von Neumann method (e.g. Ferziger
1981) for the linearization of Equations (13) to {19) about
the equilibrium flow (R = 1). The resulting ODE is, in
the semi-discrete limit, inherently stable, and therefore A-
Stable implicit schemes will also be stable. Note that the
extrapolated schemnes used here are not A-Stable, but only
nearly $0, and they can be unstable for eigenvalues which
lie very near the imaginary axis (Hairer & Wanner 1996).
In practice we have found that our scheme is stable even for

very large time steps, and even in the presence of significant
nonlinearity.

CODE VALIDATION

Steadily propagating bubbly shock waves are olie of
the few fully nonlinear solutions of the governing one-
dimensional equations of bubbly flow. We instigate a shock
wave in the computational domain by specifying a fairly
large amplitude pressure increase at the left boundary, in
the form of an incident wave whose pressure is given by:

t
p;=£2ﬁ(l+tanh(T—f)>, (25)

The parameter Ty controls the timescale over which the
pressure jump is accomplished. The pressure rise begins
propagating to the left through the domain at the “sonic
speed,” ¢, given above in equation (8). As it propagates,
nonlincarity cause the wavefront to steepen and accelerate,
and eventually a bubbly shock wave is formed. It eventually

IThough in practice we find that just one Newton iteration per time
step is most efficient when combined with the extrapolation pracedure
outlined above.

propagates to the left at a (constant) speed, u;. To test the
accuracy of the code, we compare in figure 1 the shock wave
structure from the present unsteady code with the steady
bubbly shock wave solution obtained by solving Equation
6.72 of Brennen (1995). Note that the steady equation is
an ODE which must also be solved numerically and requires
an initial position and rate of change of bubble radius with
position which are taken from the unsteady nmuinerical so-
lution. The figures show excellent agreement between the
two independent solutions. Apparenily as the resolution of
the unsteady solution is increased, the phase error between
the two solutions is decreased. There is a slightly exagger-
ated decay of the subsequent rebounds and collapses in the
numerical solution due to numerical dissipation. It should
be noted that the present unsteady shock has propagated
a substantial distance by the time the comparison is made.
One would expect further dissipation of the collapses and
rebounds to take place upon further propagation.

TEST OF NONREFLECTING BOUNDARY CONDI-
TION
A series of computations were also performed to test
the efficacy of the nonreflecting boundary coudition. An
incoming wave was generated at the nonreflecting boundary
by specifying:

pr=paexp (—(t/T)%), (26)

If T is large envugh, the energy of the wave is restricted to
low frequencies, and, for small amplitude, it should prop-
agate nondispersively at a speed, ¢, given by equation (8).
The wave propagates first in the negative z direction, re-
flects from the solid wall, propagates in the positive z direc-
tion and eventually passes through the nonreflecting bound-
ary. Because the boundary condition is approximate, some
fraction of the wave cnergy is reflected back, and the pro-
cess continues until there is no energy (or rather until there
is nothing but accumulated numerical error) left in the do-
main. A measure of the efficacy of the boundary condition
is the history of total “acoustic energy” which is estimated
simply as E(t) = Z;‘;l p2. Tests show that for very small
amplitude (p4 = O(1073) and smaller) the reflection coeffi-
cient (ratio of energy in the domain before and after passage
of the pulse through the boundary) is about 0.0016%. As
the amplitude is increased the reflection coellicient increases
owing to nonlinear effects which are not accounted for in the
analysis. However, for pa as large as 0.05 the reflection co-
etlicient increases only to 0.36%, and clearly most of the
energy is still absorbed by the boundary. Note that for
these large amplitude disturbances the incident wave steep-
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Figure 1. Comparison of numerically calculated unsteady (but prop-
agating at a constant speed) shock wave and a steady shock given
by the solution of Equation 6.72 of Brennen (1995). The bubble ra-
dius and distance are made nondimensional with the upstream equilib-
rium bubble radius. The various parameters (made nondimensional
as discussed above) are are: We = 1870, §p = 0.04, ag = 0.01,
to =100, Ty =25, o = 0.475, k= 14 (wo = 1). (a) Az; is
initially 4 for each cell; (b) Az; is initially 2. These values do not
change significantly during the course of the shock propagation.

ens and forms a bubbly shock, similar to that described in
the previous section.

CLOUD CAVITATION NEAR A VIBRATING WALL
As an application of the newly developed numerical
method, we consider the normal vibration of a wall adja-
cent to a semi-infinite fluid. For brevity, we consider here
only a subresonant case in which the frequency of oscilla-
tion of the wall is one tenth of bubble natural frequency
(in the undisturbed flow), T = 22%. In what follows, the
Weber number is taken to be large, and effective damping
coefficient, ép is set to 0.4. The effects of damping are dis-
cussed in more detail in the next section. A more complete

analysis of the present problem, including the resonant and
superresonant cases will be given later (Brennen, Colonius
& d’Auria 1997). The present configuration was studied by
Kumar & Brennen (1993a) using weakly nonlinear analysis.

For small enough amplitudes, nonlinear effects are ab-
sent and, since the frequency is low, the phase speed of pres-
sure disturbances is real according to equation (8). That is,
wall vibration generates propagating disturbances (acous-
tic waves) which are only slightly attenuated by the viscos-
ity. For higher frequency the phase speed in equation (8)
becomes imaginary and disturbances die off exponentially
with increasing distance from the wall.

As the amplitude is increased, two different nonlinear
phenomena are manifest in the results. The first is a steep-
ening of wavefronts similar to that in gasdynamics. This
process is shown in figure 2, where the wall velocity is plot-
ted along with the particle velocity some distance from the
wall for several different amplitudes of wall motion. Note
that the particle velocities are normalized by the maximum
wall velocity in each case, and the results shown are those
after an initial transient response has died out. For small
amplitudes, linear behavior is observed, with a slight at-
tenuation of the acoustic waves due to viscosity. For larger
amplitude vibration, the compressions steepen into shocks.

6
t/T
Figure 2. Nonlinear steepening of the waves. We = 1870, §p = 0.4,
ag =0.01, 0 =0.475. A grid of 801 points is used on a domain 400
units wide (relative to the initial equilibrium bubble radius). Plotted
are: The wall velocity ( ), the particle velocity at & = 400 for
A=0.0001 (- ), A =0.001 (—-—), and A=0.01 (-—-~ ).

All velocities are normalized by the amplitude of the wall velocity, A.

As the amplitude is further increased, an interesting
saturation takes place and the amplitude of the asymptotic
shock wave which is formed becomes independent of the am-
plitude of the wall vibration. This is illustrated in Figure 3
which shows results similar to Figure 2, but with higher
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amplitude. Note that the particle velocity is not normal-
ized by A in Figure 3. Unlike a gasynamic shock, there are
secondary rebounds and collapses associated with the shock
front.

t/T

Figure 3. Asymptotic shock structure. Same parameters as figure 2
but with A = 0.05 ( ), A=0.075 (------- ), 4 =0.01
(——) and A=0.2 (---- ), and A=0.3 (—— ). Note
that the velocities are not normalized by A.

In this latter regime cavitation is taking place near the
wall and bubbles are growing significantly during the ex-
pansion phase of the motion. The maximum bubble size is
still a strong function of the amplitude of the wall motion,
despite the saturation of the asymptotic shock wave. The
violent growth and collapse of the bubbles near the wall is
shown in figure 4 where the bubble radius is plotted at the
wall for the same set of amplitudes plotted in Figure 3.

t/T

Figure 4. Growth and collapse of bubble radius near wall. Same
parameters and legend as figure 3.

An hypothesis for the saturation of the asymptotic

waveform is that for sufficiently large wall motion, the bub-
ble radius grows large enough such that the “equilibrium”
sound speed given by equation (8) is no longer relevant,
but instead the local bubble natural frequency inside the
cloud is greatly reduced. Thus the wall motion is no longer
“subresonant” compared with local cloud conditions. The
waves are “cut-off” (their phase speed becomes complex)
and the wave decays exponentially with increasing distance
from the wall. Upon collapse of the cloud the waves are
then “cut-on” and a shock wave is formed. A similar “cut-
off” phenomenon was observed in the results of Smereka &
Banerjee (1988).

DAMPING MECHANISMS

It is appropriate to comment briefly on the various is-
sues involved in choosing the magnitude of the damping
parameter, §p, in the Rayleigh-Plesset equation (3). It has
been recognized for many years, that several different phys-
ical processes may contribute to the dissipation of the vol-
ume oscillations of spherical bubbles. Chapman & Plesset
(1971) provided a useful summary of the relative magni-
tudes of the contributions from viscous liquid effects, from
acoustic radiation and from thermal effects. These are often
approximated by a total “effective” viscosity for use in the
damping term in the Rayleigh-Plesset equation. It is most
often compared with experimental results for the attenua-
tion of small amplitude acoustic waves though with mixed
results (van Wijngaarden 1972). Even when these three
contributions are taken into account, the result is sometimes
orders of magnitude smaller than the observed attenuation.

Another mismatch is the number of collapses and re-
bounds observed for a cavitation bubble. Estimates of the
spherical bubble damping (from all sources) lead to far
larger and more numerous rebounds than are actually ob-
served. It seems likely that the fission of the real bubbles
which occurs in the first collapse, introduces additional dis-
sipation mechanisms which greatly increase attenuation and
reduce the number and magnitude of the rebounds which
the resulting bubble cloud exhibits. Quantifying this ad-
ditional (and dominant) attenuation mechanism presents a
real challenge as yet not met.

In calculations of bubble cloud dynamics this issue be-
comes critical for several reasons. First and most obvious,
the series of collapses and rebounds produced by each bub-
ble will influence all of the other bubbles and therefore the
coherent dynamics of the cloud. But, in addition, the com-
plex shock structure which they produce has important con-
sequences for the numerics which are required to resolve this
structure, not only in the present one-dimensional calcula-
tions but, even more demandingly, in future multidimen-
sional computations.
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For the results presented in the last section we have
used ép = 0.4. Values of dp as large as 0.5 have been
used to match theoretical and experimental predictions for
the attenuation of acoustic waves in bubbly mixtures (van
Wijngaarden 1972). Interestingly, it turns out that 6p ~ 0.5
represents a significant transition in the results presented in
the last section. In Figure 5 the bubble radius at the wall
is plotted over one period for a series of runs with A =0.3
but with differing values of ép. For ép greater than 0.8
the maximum bubble radius begins to decrease significantly.
For this large value of the damping there is no violent col-
lapse and rebound of the cloud. For values below 0.8 the
maximum bubble radius appears to saturate, and the pri-
mary difference in the results is the number of collapses and
rebounds during each cycle. For values of §p less than 0.4
(not shown in the plot), the larger number of rebounds lead
to greater computational requirements for adequate resolu-
tion of both temporal and spatial features of the flow. For
values significantly lower than 0.4 we have not been able
to obtain converged solutions. We conclude that there ex-
ists a value of the damping which not only avoids significant
computational difficulties but also produces realistic results.
For the present computation this critical value of damping
dp = 0.4, but we must note that its sensitivity to the other
parameters (ap, 4, and T') has not yet been investigated in
detail.

5 525 55 5.75 6
t/T

Figure 5. Growth and collapse of bubble radius near wall for 4 = 0.3

and 0p = 0.4 ( ), 0p =0.8 (reeeee ) 0p =4.0 (—-—),
and dp =40.0 (---~-).
CONCLUSION

An efficient and accurate numerical method has been
developed for computing one-dimensional cavitating flows.
The flow adjacent to a vibrating wall (an idealized vibra-

tory cavitation damage device) has been investigated for fre-
quencies much smaller than the bubble natural frequency.
Several interesting nonlinear phenomena are evident in the
results. For sufficiently large amplitude, wave steepening
leads to the formation of shocks However, as the amplitude
is increased beyond a certain threshold, the strength of the
propagating shock wave saturates, and the ever more vio-
lent cloud growth and collapse is limited to a region very
near the wall.

Resonant and super-resonant vibration of the wall leads
to other nonlinear phenomena including period doublings of
the cloud growth and collapse cycle near the wall. These
results will be presented later (Brennen et al. 1997). Even-
tually efficient numerical methods now need to be extended
to multidimensional cavitating flows.

ACKNOWLEDGMENT

This research was supported, in part, by the Office
of Naval Research under grant number N00014-91-J-1295,
The third author is also grateful for support from the Eu-
ropean Space Agency.

REFERENCES

Biesheuvel, A. & van Wijngaarden, L. (1984), “T'wo phase
flow equations for a dilute dispersion of gas bubbles in
liquid’, J. Fluid Mech. 148, 301-318.

Brennen, C. (1995), Cavitation and Bubble Dynamics, Ox-
ford University Press.

Brennen, C., Colonius, T. & d’Auria, F. (1997), Computing
shock waves in cloud cavitation, to be presented at the
Third International Symposium on Cavitation, Gernoble,
France, April 7-10, 1998.

Chapman, R. & Plesset, M. (1971), ‘Oscillations of a cloud
of bubbles of small and not so mall amplitude’, ASME J.
Basic Eng. 93, 373-376.

d’Agostino, L. & Brennen, C. (1983), On the acoustical dy-
namics of bubble clouds, in ‘ASME CAvitation and Mul-
tiphase Flow Forum’, pp. 72-75.

d’Agostino, L. & Brennen, C. (1989), ‘Linearized dynamics
of spherical bubble clouds’, J. Fluid Mech. 199, 155-176.

Ferziger, J. (1981), Numerical Methods for Engineering Ap-
plication, John Wiley & Sons.

Hairer, E. & Wanner, G. (1996}, Solving Ordinary Differ-
ential Equations II, rev edn, Springer.

Hansson, I. & Mpgrch, K. (1980), ‘The dynamics of cav-
ity clusters in ultrasonic (vibratory) cavitation erosion’, J.
Appl. Phys. 51, 4651-4658.

Hansson, 1., Kedrinskii, V. & Mgrch, K. (1982), ‘On the
dynamics of cavity clusters’, J. Phys. D 15, 1725-1734.

Copyright 1998 by ASME



Kumar, S. & Brennen, C. (1993a), ‘Some nonlinear interac-
tive effects in bubbly clouds’, J. Fluid Mech. 253, 565-591.

Kumar, S. & Brennen, C. (1993b), ‘A study of pressure
pulses generated by travelling bubble cavitation’, J. Fluid
Mech. 255, 541-564.

Megrch, K. (1980), On the collapse of cavity cluster in flow
cavitation, in ‘Springer Series in Electrophysics’, Vol. 4,
p. 95.

Omta, R. (1992), ‘Oscillations of a cloud of bubbles of
small and not so mall amplitude’, J. Acoust. Soc. Am
82(3), 1018-1033.

Reisman, G. (1997), Dynamics, Acoustics and Control of
Cloud Cavitation on Hydrofoils, PhD thesis, California In-
stitute of Technology.

Smereka, P. & Banerjee, S. (1988), ‘The dynamics of peri-
odically driven bubble clouds’, Phys. Fluids 31, 3519-3531.

van Wijngaarden, L. (1972), ‘One-dimensional flow of lig-
uids containing small gas bubbles’, Ann. Rev. Fluid Mech.
4, 369-396.

van Wijngaarden, L. & Buist, J. (1992), ‘The emission of
sound by statistically homogeneous bubble layers’, J. of
Eng. Math. 26, 195-210.

Vyas, B. & Preece, C. (1974), Spec. tech. publ. 567, Tech-
nical report, Am. Soc. Test. Mater.

Wang, Y.-C. (1996), Shock Waves in Bubbly Cavitating
Flows, PhD thesis, California Institute of Technology.

Wang, Y.-C. & Brennen, C. (1994), Shock wave develop-
ment on the collapse of a cloud of bubbles, in ‘Cavitation
and Multiphase Flow Forum’, Vol. FED 194, ASME, p. 15.

Wang, Y.-C. & Brennen, C. (1995), The noise gener-
ated by the collapse of a cloud of cavitation bubbles, in
‘ASME/JSME Symposium on Cavitation and Gas-Liquid
Flow in Fluid Machinery and Devices’, Vol. FED 226,
ASME, p. 17.

Copyright 1998 by ASME



