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Abstract

This paper presents a mathematical model simulating the evolution of the vertical dynamics of a population of
algae in an aqueous environment. Building on an earlier paper (Brennen et al., 2017), the model includes (1) pho-
tosynthesis and the effects of light absorption by the water and by the algae, (2) algal mortality and sedimentation,
(3) differential sedimentation of live and dead algae, (4) a reproduction rate dependent on nutrient and oxygen
levels, (5) nutrient uptake and accumulation due to excretion and decomposition, (6) oxygen production due to
photosynthesis and absorption due to respiration and algal decomposition. Five differential equations for light, live
and dead algae, nutrient and oxygen are solved numerically as a function of time in hours (over as much as 60 days)
and of depth down to 20 m. The present paper explores many of the dynamical features displayed when realistic
properties and parameters of the dynamics are included in the simulations. The effects of sedimentation and of
differential sedimentation are examined. The model exhibits the critical competition between sedimentation and
diffusive turbulent mixing and shows how diffusivities above a critical value lead to explosive population growth
(algal blooms). In addition the effects of nutrient-rich and nutrient-poor environments are demonstrated as are the
effects of dissolved oxygen.

Nomenclature

D = diffusivity, m2/hr
I = light intensity, μmol/m2s (1 μmol/m2s = 218 g/s3)
I∗ = constant, reference light intensity, μmol/m2s
N = total number concentration of algae, cells/mm3

ND = number concentration of dead algae, cells/mm3

NL = number concentration of live algae, cells/mm3

N∗ = constant, reference population density, cells/mm3

P = nutrient concentration in the water, mmol/m3

P ∗ = constant, reference nutrient concentration in the water, mmol/m3

Pa = proportionality factor determining nutrient release due to cell death
Pb = proportionality factor determining nutrient uptake
Q = oxygen concentration in the water, mmol/m3

Q∗ = constant, reference oxygen concentration in the water, mmol/m3

Qa = oxygen mass released by the death of one cell, mmol
Qb = oxygen mass produced by photosynthesis of one cell, mmol
mp = cell reproduction rate, /day
t = time, hr
U∗

L = sedimentation velocity of the live organisms, m/hr
U∗

D = sedimentation velocity of the dead organisms, m/hr
z = depth below the free surface, m
αw = light absorption coefficient of water, m−1

αn = light absorption coefficient of organisms, m2/cell
β, β∗ = reproduction constants
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κ = mortality rate, /hr
κ1, κ2 = mortality parameters, /hr

1 Introduction

A number of investigators have tackled the mathematics of algal dynamics including for example, Beretta and
Fasano (1990), Belov and Giles (1997), Aris (1997), Reynolds et al. (2001), and Serizawa et al. (2008). In an
earlier paper (Brennen et al., 2017) we presented a model of the vertical dynamics of algae that used some of the
features of those earlier models and simulated the evolution of a population of both live and dead algae during day
and night over periods of up to 60 days. Due to photosynthesis, algal concentration peaks at the end of the day
and decays at night due to algal mortality and sedimentation. That net population change over a 24 hour period
is important in predicting algal blooms and requires the integration of the growth and decay processes over many
days.

The model presented in Brennen et al. (2017) included absorption of sunlight by both algae and water, photo-
synthesis and algal mortality, sedimentation of both live and dead algae. The methodology used for the numerical
solution of the differential equations was tested against the analytical solution presented by Aris (Aris, 1997) of
a simplified set of equations that included just the light absorption by water and the photosynthetic growth and
mortality of a population of live algae. This second paper supplements the model with differential equations for
the dynamics of nutrient and of dissolved oxygen concentrations and presents numerical solutions to the complete
set of five differential equations integrated over a depth, z, of up to 20m and a length of time, t, over day and night
for up to 60 days. These simulations exhibit many effects and features that may occur in actual algal blooms and
provide a framework for the possible examination of multiple interactions that might not otherwise be capable of
evaluation.

It is appropriate to note that there are other algal responses to light that may well intersect with the dynamics
we focus on here. For example, the phenomenon of phototaxis in which some algae swim toward light (see, for
example, Vincent and Hill (1996) or Ghorai and Hill (2001)) could have two different but significant effects on the
results presented herein. First, as we will see, the differential in the effective sedimentation velocities between the
live and dead algae has a substantial effect on the population dynamics over longer times. Moreover, the mixing
generated by the bioconvection of phototaxic or geotaxic algae can also have a major effect as will be seen in one of
the numerical simulations. Thus, by adjusting the sedimentation velocities and the mixing parameters, the effects
of phototaxis and/or bioconvection could be accommodated, albeit rather crudely. Other features which may play
a role are micro-organism buoyancy variations (see, for example, Kromkamp et al. 1990, Belov and Giles 1997,
Brookes and Ganf 2001) or the active swimming of algae (see, for example, Pedley 2016).

2 Mathematical model

The first three differential equations of the present model follow from the work of the aforementioned investigators
and are described in Brennen et al. (2017). They define the changes in the light intensity, I(z, t), the concentration
of live algae, NL(z, t), and the concentration of dead algae, ND(z, t) (the total number of organisms is denoted by
N = NL + ND). First the equation governing the light intensity, I, is

∂I

∂z
= −I {αw + αnN} (1)

where αw and αn are the light absorption coefficients for water and for the organisms. Serizawa et al. (2008) use
the same equation in its equivalent integral form. Second the algal population equations that are also those used
by Serizawa et al. (2008) contain a reproduction rate, mp(z, T ), and a mortality rate, κ:

DNL

Dt
=

∂NL(z, t)
∂t

+ U∗
L

∂NL(z, t)
∂z

= mp(z, t)NL(z, t) − κNL(z, t) (2)

and
DND

Dt
=

∂ND(z, t)
∂t

+ U∗
D

∂ND(z, t)
∂z

= κNL(z, t) (3)

where U∗
L and U∗

D are the sedimentation velocities of the live and dead organisms (assumed independent of z and
t). In the earlier calculations of Brennen et al. (2017) the mortality rate, κ, is taken to be a simple constant and
mp is assumed, for simplicity, to be linearly proportional to the light intensity, I, so that

mp(z, t) = βI(z, t) (4)
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Later the dependencies of these parameters on the dissolved oxygen content, Q(z, t), and on the nutrient content,
P (z, t), are introduced.

Appropriate boundary conditions are also needed and, in this paper, the same boundary conditions as used in
Brennen et al. (2017) are employed: the light intensity at the surface, I(0, t), is a selected input function,

I(0, t) = I∗ sin (πt/12) for 0 < t < 12 and I(0, t) = 0 for t > 12 (5)

where t is the time in hours after 6 a.m. It is also necessary to choose initial distributions for the organism
concentrations, NL(z, 0) and ND(z, 0), and, as in Brennen et al. (2017),

NL(z, 0) = N∗(αnN∗z) e−αnN∗z and ND(z, 0) = 0 (6)

where N∗/e is the peak NL value located at a depth of (αnN∗)−1.
Finally, we note that mixing of the cells between the depths (or, in the later equations, diffusion of the nutrient

or oxygen) could be incorporated by replacing the operator

∂

∂t
by

∂

∂t
− ∂

∂z

{
D ∂

∂z

}
(7)

where D is some diffusivity (see section 4).

3 Equations for Nutrient and Oxygen

The above system of equations for the light and the algae populations will now be supplemented by equations for
the oxygen concentration, Q(z, t), and the nutrient concentration P (z, t). Note first that CAEDYM (Hipsey et al.
2012) describes a complex nutrient or phosphorus dynamic that is reproduced in Figure 1; we will only attempt
to model the components in the upper right hand corner, namely the biological uptake and the accumulation of
phosphorus due to excretion and decomposition. Following Serizawa et al. (2008) the rate of change of nutrient

Figure 1: Phosphorus dynamics according to CAEDYM (Hipsey et al. 2012).

concentration due to cell death is given by +PaκNL where Pa (in mmol per cell) is proportional to the nutrient
released by the death of one cell. In addition, we assume that the rate of biological uptake of nutrient by a single
cell (in mmol/hr) is proportional to the growth rate, mp, and therefore proportional to both the light intensity, I
(as in equation 4) and to the nutrient content, P (z, t). Then equation 4 is replaced by

mp(z, t) = βI(z, t) = β∗I(z, t)P (z, t) (8)
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(we note that Yoshiyama and Nakajima (2002) use a somewhat similar expression for the growth rate dependence
on light and nutrient). Furthermore the rate of loss of nutrient concentration due to that uptake is given by
−PbmpNL = −Pbβ

∗IPNL where Pb is a proportionality factor in mmol/hr per cell. The equation for the nutrient
is therefore written as

∂P

∂t
= PaκNL − PbmpNL = PaκNL − Pbβ

∗IPNL (9)

where the nutrient concentration is in units of mmol/m3 and we estimate the parameters Pa and Pb below. Note
that when the IP = Paκ/Pbβ

∗ the rate of change of nutrient concentration is zero. Equation 9 is similar to the
nutrient equation used by Serizawa et al. (2008) who also include a diffusion term in the form of the substitution
given in equation 7. We also note that Reynolds et al. (2001), in their simulation, incorporate a nutrient model
that involves limits on the growth rates but no differential equation similar to equation 9.

Turning now to the oxygen concentration, note first that CAEDYM (Hipsey et al. 2012) describes a complex
oxygen dynamic that is reproduced in Figure 2. We will address only the items numbered 5 and 3 in this figure,
namely the production of oxygen due to photosynthesis and the absorption of oxygen due to respiration and the
decomposition of dead algae. The corresponding differential equation can be constructed as follows (neither Serizawa

Figure 2: Oxygen dynamics according to CAEDYM (Hipsey et al. 2012).

et al. (2008) nor Reynolds et al. (2001) explicitly incorporate the oxygen in their systems of equations). Denoting
by Qa the mass of oxygen (in mmol) consumed when one cell decomposes, it follows that the rate of change of the
oxygen concentration, ∂Q/∂t, caused by decomposition is given by −QaκNL. In addition, if the mass of oxygen (in
mmol) produced by photosynthesis in forming a single cell is denoted by Qb, then the rate of production of oxygen
from photosynthesis is equal to Qb DNL/Dt. Using equation 2, this can be written as Qb(mpNL − κNL). Putting
both rates of change of oxygen mass together yields

∂Q

∂t
= −QaκNL + Qb(mpNL − κNL)

= −(Qa + Qb)κNL + Qbβ
∗IPNL (10)

using equation 8 for mp. Note that when IP = (Qa + Qb)κ/Qbβ
∗ the rate of change of the oxygen concentration

is zero.

4 Physical parameters - first set

The following are the set of standard values for the physical parameters used in the previous paper (Brennen et al.,
2017) and in this presentation:
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• The units of light intensity, I, are μmol/m2s and the light intensity at the water surface at noon, I(0, t), is
selected to be 800 μmol/m2s.

• The light absorption by water alone is taken to be αw = 0.2 m−1 (Yoshiyama and Nakajima 2002, Serizawa
et al. 2008a).

• The units of the concentrations of algae are cells/mm3 (note that 1 cell/mm3 ≡ 109 cells/m3). Takamura
and Yasuno (1984) use a concentration greater than 1 cell/mm3 to define an algal bloom.

• The increase in the light absorption per unit concentration of organisms is αn = 2.4×10−12 m2/cell (Huisman
et al. 2004, Serizawa et al. 2008a). Since the concentrations of algae are given in cells/mm3 , the standard
value for αn is 0.0024.

• The maximum growth rate of organisms at the surface is 0.58/day on the warmest day and 0.10/day on
the coldest day (Serizawa et al. 2008a). The corresponding peak growth rates at noon for a daily growth
pattern that varies sinusoidally from zero at 6 am to a peak at noon and back to zero at 6 pm and is zero
at night would be π times these values. Therefore possible values of βI∗ (or β∗I∗P ∗) on the surface range
from 0.0759/hr to 0.0131/hr. The standard value of β in the present computations is therefore calculated as
βI∗/(3600 × 218 × I∗) in units of s2/g. In the calculations without the nutrient equation, we simply input
the growth rate βI∗ as a constant with some value from 0.0759/hr to 0.0131/hr (the chosen standard value
is 0.0759/hr).

• The standard mortality rate for organisms, κ, is 0.15/day or 0.00625/hr (Serizawa et al. (2008)).

• Typical algal sedimentation velocities range from 0.41 m/day (Belov and Giles 1997) to 0.1 → 1.0 m/day
(Reynolds et al. 2001). The standard values for both live and dead algae are chosen to be 0.41 m/day.

• Typical turbulent diffusivities (whose effect is explored below) range from 0 to 0.002 m2/hr. In comparison
these are much larger than typical molecular diffusivities 0.7 × 10−5 m2/hr but also much smaller than the
diffusivities in turbulent benthic boundary layers (Yeates and Imberger (2003)) or those caused by bubble
mixing (Brennen and Imberger 2014). It is also much smaller than the diffusivities deployed by Yoshiyama
and Nakajima (2003) in their simulations (0.18 m2/hr).

• The form of the initial distributions of live and dead algae at time t = 0 are chosen to be

NL(x, 0) = N∗∗ z

zp
e
1− z

zp and ND(x, 0) = 0 (11)

where N∗∗ is the peak value of the initial concentration of live algae and zp is the depth at which that
maximum occurs. The standard values used for N∗∗ and zp are 0.1 cells/mm3 and 0.1 m. Further comments
on these choices are delayed until discussion of the results.

5 Some Simulations without Nutrients or Oxygen

In 30-hour and 30-day simulations presented in Brennen et al. (2017) it was observed that when the same sedi-
mentation velocity was used for both live and dead algae, the live population peaked after about 10 days and then
continuously declined as the live algae sank. The concentration of dead algae grew continuously though it tailed off
at depth after 25 days. However, the peak in the dead algal population occurred below that of the live population
because the light above the dead population peak continues to foster growth.

The results are quite different when the sedimentation velocities of the live and dead algae are different rather
than the same. Figure 3 shows the results when the sedimentation velocity for the live algae is 0.0085 m/hr while
that for the dead algae is 0.017 m/hr. As shown in Brennen et al. (2017) the growth of live algae is much greater
in this case since the local light absorption by the dead algae is greatly reduced.

Note that using the 1 cell/mm3 algal bloom standard suggested by Takamura and Yasuno (1984), Figure 3
exhibits a concentrated algal bloom in a sinking layer about 1 m thick. It lasts for about 30 days before dying out.
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Figure 3: A 60-day simulation with the standard parameters except that the sedimentation velocity for live and
dead algae have been set at 0.0085 m/hr and 0.017 m/hr respectively. Solid and dashed lines respectively indicate
the live and dead algal populations at noon on the days indicated.

6 The Effect of Mixing

A notable feature of the results of the last section is that since all algae are sedimenting there is no repopulation near
the surface and therefore that population dies out completely. If, on the other hand, there were some mixing the
surface population would be replenished and the algae dynamics could be quite different. For example, Huisman
et al (2004) discuss how changes in turbulent vertical mixing affect competition for light between buoyant and
sinking phytoplankton species and thereby cause a dramatic shift in phytoplankton species composition. Also,
both Yoshiyama and Nakajima (2002) and Serizawa et al (2008b) demonstrate substantial effects of mixing on algal
dynamics.

Mixing is added to the present model by including a diffusion term (like that included in equation 7) to each of
the governing equations, so that we can examine how mixing causes changes in the algal dynamics. An example is
shown in Figure 4 in which the parameters are identical to those of Figure 3 except that mixing has been added
with a diffusivity of D = 0.0005 m2/hr. Comparing Figures 3 and 4 we see that a diffusivity of D = 0.0005 m2/hr
has simply damped out the growth and somewhat broadened the population peaks. Diffusivities less than D =
0.0005m2/hr have even less consequential effect. However, when the diffusivity is increased to D = 0.002 m2/hr, a
much more dramatic effect occurs as seen in Figure 4: the population no longer dies out but literally explodes. This
occurs because the diffusion overcomes the downward sedimentation of the algae and allows the bloom near the
surface to continue growing seemingly without bound. This change in response is common in convection/diffusion
phenomena when the diffusion overcomes the convection (or in this case the sedimentation).

The effect can be seen more dramatically in Figure 5 where the populations after 30, 45 and 60 days are plotted
for the four diffusivites 0, 0.0002, 0.0005 and 0.002 m2/hr for live and dead algae. For D less than or equal to
about 0.0005 m2/hr the population of live algae declines after an initial period of growth, the decline being caused
by the accumulation of dead algae above the live population peak (Figure 4). On the other hand for D equal to or
greater than 0.002 m2/hr the population of live algae grows dramatically and seemingly without bound (Figure 4)
while the live population peak remains above the dead population peak. The transition between these responses is
shown directly in Figure 5. The results of Figure 5 indicate that, under the conditions of the present simulations,
a value of D = 0.002 m2/hr is sufficient to manifest this dramatic transition; still larger diffusivities like those used
by Yoshiyama and Nakajima (2003) would result in a similar change in the response.
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Figure 4: The simulation of Figure 3 but including mixing with a diffusivity of D = 0.0005 m2/hr (upper graph)
and D = 0.002 m2/hr (lower graph). Solid and dashed lines respectively present the live and dead algal populations
at noon on the days indicated. As in Figure 3 the sedimentation velocities for live and dead algae are 0.0085 m/hr
and 0.017 m/hr respectively.
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Figure 5: Data from the simulations of Figure 4 showing populations of live algae (upper graph) and dead algae
(lower graph) at three different times with four different diffusivities.
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7 Nutrient and Oxygen Parameters

Attention will now be given to the effects of nutrient and oxygen concentrations as modeled by equations 9 and 10.
The following additional parameters and data are required for these model equations:

• Following Serizawa et al. (2008) we assume that the nutrient content in a cell is 1.5 mmol/g. With an assumed
cell mass of 4 × 10−11 g/cell this yields a nutrient content of 6 × 10−11 mmol/cell. If half of this is recycled
when the cell dies, the nutrient mass released is 3×10−11 mmol per cell death. Since we use population units
of cells/mm3 , it follows that, in equation 9, Pa = 0.03 mmol per cell.

• In addition in equation 9 it follows that the nutrient uptake in a cell is 6 × 10−11 mmol/hr per cell and, in
equation 9, Pb = 0.06 mmol/hr per cell.

• In the calculations without the nutrient equation, we treated the growth rate parameter βI∗ as a constant
with some value from 0.0759/hr to 0.0131/hr and a chosen standard value of 0.0759/hr. With the nutrient
equation included the growth rate parameter is β∗I∗P ∗ which takes the same values and P ∗ is the starter
value for the nutrient content for which we select values of 1− 40 mmol/m3 .

• Reynolds (1997) comments that ”.. algae are able to maintain maximum growth rates down to external
phosphorus concentrations of 0.1−0.2 μmolP/L” which values correspond roughly to nutrient concentrations
of 5 − 10 μmol/L (5 − 10 mmol/m3). A low concentration of nutrient in lake water is below 0.5 μmol/L; a
high concentration would be greater than 1.0 μmol/L (Lake Access Website).

• In addition it is necessary to choose an initial nutrient distribution, P (z, 0) = P ∗: typically P ∗ = 1 −
40 mmol/m3 .

• Appropriate oxygen parameters are more difficult to ascertain. For reference we use units of mmolO2/m3

for the oxygen concentration (note 1 mg/L = 31 mmolO2/m3). Saturation of water with oxygen at sea level
pressures is 267 mmol/m3 (8.6 mg/L) at 25◦C and 453 mmol/m3 (14.6 mg/L) at 0◦C (Lake Access Website).

• Typically algae growth is not impaired until oxygen levels fall below about 8−10 mg/L (250−300 mmolO2/m3).
Algae die when the oxygen falls below about 4 mg/L (120 mmol/m3) (Lake Access Website).

• We will assume that the process of photosynthesis releases 6 mol of oxygen in producing 1 mol of algae and
therefore the creation of each cell of mass 0.6× 10−10 mmol produces 3.6× 10−10 mmol of oxygen. It follows
that the mass of oxygen produced by photosynthesis in forming a single cell is 3.6 × 10−10 mmol per cell.
Since we use populations units of cells/mm3 , it follows that in equation 10, Qb = 0.36.

• The mass of oxygen consumed when one cell of mass 0.6 × 10−10 mmol decomposes is assumed to be 3.6 ×
10−10 mmol so that in equation 10, Qa = 0.36 (since we use populations units of cells/mm3).

• In addition it is necessary to choose an initial oxygen distribution, Q(z, 0); we selected a rough initial oxygen
distribution that decreases linearly with depth from a value of Q(0, 0) = Q∗ at the surface to half that value
at a depth of 3 m (Lake Access Website). Typical Q∗ values selected are 5− 8 mg/L or 150− 269 mmol/m3

(Lake Access Website).

It is important to emphasize that these estimates for the nutrient and oxygen equations are, at best, crude and
could be way off base; they may also differ considerably from one phytoplankton to another.

8 Some Simulations with Nutrients and Oxygen

Figure 6 presents two typical simulations that include the nutrient equation 9 with the parameters as described in
the preceding section. Figure 6 (upper graph) is an example that includes abundant nutrient, namely an initially
uniform nutrient content of P (z, 0) = 40 mmol/m3 . Comparing this with Figure 4, it is clear that the effect of
including the nutrient dynamics is small and that the explosive algal growth exhibited in Figure 4 is still present.
However, as shown in Figure 6 (lower graph), in nutrient poor conditions with an initially uniform nutrient content
of P (z, 0) = 1.0 mmol/m3 , the explosive algal growth is entirely suppressed and the dynamic response is more akin
to that without mixing (Figure 3). Note that this change is consistent with Reynolds (1997) comment that algae
growth rates are substantially suppressed in nutrient concentrations below 5 − 10 mmol/m3 .
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Figure 6: The simulation of Figure 4 but including the nutrient dynamics with Pa and Pb values of 0.03 and
0.06 mmol/cell, sedimentation velocities for the live and dead algae of 0.0085 m/hr and 0.017 m/hr respectively
and a diffusivity, D = 0.002 m2/hr. In the upper graph the initially uniform nutrient content is 40 mmol/m3 , in
the lower graph it is 1.0 mmol/m3 . Solid lines, dashed lines and dotted lines respectively indicate the live and dead
algal populations and the nutrient concentration at noon on the days indicated.

The oxygen concentration, Q, is determined by equation 10 but does not appear explicitly in the other equations
for the algal dynamics. Consequently the oxygen concentration only changes the results through any effects it might
have on the other parameters in the simulation (such as the algal mortality, κ). As an example of the effect of the
oxygen concentration, we include here a simulation in which κ is adjusted as follows:

• For Q > 8.6 mg/L, κ = κ1 with κ1 = 0.15

• For 4 mg/L < Q < 8.6 mg/L, κ = κ1 + (κ2 − κ1) ∗ ((8.6− Q)/4.6)2) with κ2 = 0.3

• For Q < 4 mg/L, κ = κ2 with κ2 = 0.3 and NL = 0

Thus, κ is increased above κ1 when Q falls below 8.6 mg/L and the algae all die when Q falls below 4 mg/L. In
Figure 7 we present the earlier simulation of Figure 6 but with this oxygen-dependant mortality. The live and dead
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Figure 7: The simulation of Figure 6 but also including the oxygen dynamics with a mortality that varies with the
oxygen concentration as described in the text. Solid lines, dashed lines and dotted lines respectively indicate the
live and dead algal populations and the oxygen concentrations at noon on the days indicated.

algal populations are now radically different and the population ”explosion” is no longer extant. However as shown
in Figure 7 the oxygen concentration itself only exhibits small deviations during the 60 − day simulation.

9 Concluding Remarks

This paper extends the work of Brennen et al. (2017) developing a model to simulate the vertical dynamics of
algae in an aqueous environment. It includes photosynthesis and the effects of light absorption by the water and
by the algae, mortality and the differential sedimentation of live and dead algae, a reproduction rate dependent on
nutrient and oxygen levels, nutrient uptake and accumulation due to excretion and decomposition as well as oxygen
production due to photosynthesis and absorption due to respiration and algal decomposition. The five differential
equations for light, live and dead algae, nutrient and oxygen are solved numerically as a function of time in hours
(over as much as 60 days) and of depth down to 20m. Efforts were made to insure that the many chemical and
physical properties and parameters used in the simulations were as realistic as possible. However, these parameters
very widely with environments and with species and no effort was made to explore these variations.

Among the many phenomena manifest by the numerical solutions that were explored were the following obser-
vations:

• Sedimentation in the absence of diffusion ultimately leads to extinction as a result of light absorption and
mortality.

• Differential sedimentation (dead algae sedimenting faster than live algae) leads to greater population growth
since there is less light absorption above the live algae.

• Diffusion (or turbulent mixing) leads to much greater algae populations since it reseeds the environment near
the surface. Indeed in most simulations there exists a supercritical diffusivity that leads to ”explosive” algal
growth. Ultimately subcritical mixing always led to extinction, while supercritical mixing caused growth than
showed little sign of abating even after 60 days.

• While algae populations that constitute an algal bloom (greater than about 1cell/mm3) could occur in the
absence of the above ”explosive” growth, supercritical mixing makes a bloom much more likely.

• As expected nutrient-rich environments had little effect on the algal dynamics while nutrient-poor environ-
ments led to much reduced growth and could eliminate the growth ”explosions”. Oxygen had similar effects
on the algal dynamics.
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Of course, many other avenues could be explored with this model and we make no claim as to the thoroughness of
the present investigations. The author would be happy to provide copies of the software to any researchers that
might wish to explore these variations.
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