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This is a contribution to the special issue honoring the late John R. Blake of the University of Birmingham.
All three authors had the pleasure of extensive technical interactions with John Blake during his career in
the UK, USA and Australia and benefited both professionally and personally from his friendship. John’s
work in developing fundamental mathematical solutions for Stokes’ flows and his application of those
mathematical tools to analyses of microorganism locomotion led to special new insights into the world
of small-scale swimming. This special issue devoted to John’s memory seems an appropriate occasion
to present another fluid mechanical challenge associated with microorganisms, namely the dynamics
of algal blooms. Though it is a special reduced-order model that is of limited practical value, John
would have particularly enjoyed the analytical solution to the dynamics of algae that was presented by
Rutherford Aris (1997, Reflections on Keats’ equation. Chem. Eng. Sci., 52, 2447–2455) in a somewhat
eccentric paper. We revisit that solution in this paper and present an extension to Aris’ solution that
includes sedimentation of the algae. We think that John would have enjoyed this solution and would,
in all likelihood, have been able to expand upon it to include other features such as microorganism
buoyancy variations (see, e.g. Kromkamp & Walsby 1990; Belov & Giles, 1997, Dynamical model of
buoyant cyanobacteria. Hydrobiologia, 349, 87–97; Brookes & Ganf, 2001, Variations in the buoyancy
response of Microcystis aeruginosa to nitrogen, phosphorus and light. J. Plankton Res., 23, 1399–1411),
the death of algae (see, e.g. Serizawa et al., 2008a, Computer simulations of seasonal outbreak and diurnal
vertical migration of cyanobacteria. Limnology, 9, 185–194; Reynolds, 1984, The Ecology of Freshwater
Phytoplankton. Cambridge University Press), the swimming of algae (see, e.g. Pedley, 2016, Spherical
squirmers: models for swimming micro-organisms. IMA J. Appl. Math., 81, 488–521) and other relevant
hydrodynamic matters.
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Nomenclature

C1, C2 = integration constants

D = diffusivity

I = light intensity
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I∗ = constant, reference light intensity

N = total number concentration of algae, m−3

ND = number concentration of dead algae, m−3

NL = number concentration of live algae, m−3

N∗ = constant, reference population density

P = nutrient concentration in the water

P∗ = constant, reference nutrient concentration in the water

Pa = nutrient mass released by the death of one cell

Pb = proportionality factor determining nutrient uptake

Q = oxygen concentration in the water

Q∗ = constant, reference oxygen concentration in the water

Qa = oxygen mass released by the death of one cell

Qb = oxygen mass produced by photosynthesis of one cell

i = dimensionless light intensity, I/I∗

mp = cell reproduction rate

n = dimensionless number concentration of total algae, N/N∗

nL = dimensionless number concentration of live algae, NL/N∗

nD = dimensionless number concentration of dead algae, ND/N∗

t = time, s

U∗
L = sedimentation velocity of the live organisms, m s−1

U∗
D = sedimentation velocity of the dead organisms, m s−1

UL = dimensionless sedimentation velocity of the live organisms

UD = dimensionless sedimentation velocity of the dead organisms

x = dimensionless depth, x = αN∗z or x = αnN∗z

y = dimensionless time, y = βI∗t or y = βI∗P∗t

z = depth below the free surface, m

αw = light absorption coefficient of water

αn = light absorption coefficient of organisms

β, β∗ = constants

γ1 = light absorption constant, = αw/αnN∗

μ = daily mortality rate

γ2 = dimensionless mortality rate, μβI∗ or μ/βI∗P∗

ξ , η = mapped coordinate system, ξ = x − Ûy, η = y
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1. Introduction

Algal blooms (Reynolds, 1984; Boney, 1989; Tomas, 1997) can be very harmful to the aqueous
environment in which they occur but are very difficult to predict. The phytoplankton which comprise
them are photosynthetic autotrophs that only require light and inorganic nutrients in order to grow. A
good constituent with which to characterize that food concentration is the phosphate content though
nitrate, ammonium and carbon dioxide may also be involved. But it is light that generates the synthetic
process that produces the carbohydrates, proteins and other building blocks of life and leads to the
increase in the number and concentration of algae. Of course, algae also die so the sedimentation of the
dead algae and their decomposition are also important parts of this complex dynamical system. Oxygen
is another important player in algal dynamics for it is produced by photosynthesis and absorbed during
the decomposition of dead algae.

When the conditions for cellular growth and multiplication are right, the growth rate can produce
enormous concentrations of organisms known as algal blooms containing as many as 106 cells per liter.
These concentrations can lead to high levels of various toxins that threaten other life in the aqueous
environment. Hence we identify the need to understand the dynamics of algae and to predict the
occurrence of harmful blooms. While much progress has been made in the qualitative understanding
of these processes, quantitative understanding and prediction are a long way off. At a minimum this
requires

• the construction of a relevant mathematical model

• a method for solving the equations of the model

• a determination of the important convective and diffusive parameters embedded in the model

• a sufficient set of observational data with which to validate the model.

Of these challenges, perhaps the last represents the most difficult hurdle. However, this paper will focus
on the construction of the mathematical model, on some useful reduced-order analytical solutions and
present a few sample numerical calculations of a more complete set of model equations.

The key role that sunlight plays in the growth of algae means that the concentration often peaks
toward the end of a day and then decays at night due to algal mortality and sedimentation. As a
consequence the net concentration increase or decrease over a 24-h period is often the key in algal
blooms. To predict this requires the integration of the growth and decay processes over whole day (and
perhaps many days). At a minimum this integration would require the following:

• A model of the incident sunlight and its absorption with depth; the absorption will in turn depend
on the concentration of algae in the water above the algae.

• A model for the rate of change of the algal concentration as a function of the incident light. This
should include the rate at which algae are reproducing, the rate at which they are dying and the
rate at which they sediment to deeper depths (the sedimentation velocities of live and dead algae
may also be different).

• A model of the reproduction of algae that depends on the light concentration and the
concentration of nutrients.
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• A model for the nutrient concentration that includes the uptake of nutrients by the algae and the
production of nutrients due to the death of algae and their decomposition.

With respect to the third item, it is worth observing that there are other algal responses to light that
may well intersect with the dynamics we focus on here. For example, the phenomenon of phototaxis in
which some algae swim toward light (see, e.g. Vincent & Hill, 1996, or Ghorai & Hill, 1999) could have
two different but significant effects on the results presented herein. First, as we will see, the differential
in the effective sedimentation velocities between the live and dead algae has a substantial effect on
the population dynamics over longer times. Moreover, the mixing generated by the bioconvection of
phototaxic or geotaxic algae can also have a major effect as will be seen in one of the numerical
simulations. Thus, by adjusting the sedimentation velocities and the mixing parameters, the effects of
phototaxis and/or bioconvection can be accommodated, albeit rather crudely.

A number of investigators have tackled the mathematics of algal dynamics including e.g. Beretta &
Fasano (1990), Belov & Giles (1997), Aris (1997), Reynolds et al. (2001) and Serizawa et al. (2008a).
Though it is of limited practical application, we highlight here the neat reduced-order analytical solution
of Aris (1997) and present an extension to that solution that includes the sedimentation of the algae.

2. Mathematical model

The most general mathematical model whose solutions are explored in this and later papers consists of
the following five partial differential equations governing the light intensity, I(z, t); the concentration of
live algae, NL(z, t); the concentration of dead algae, ND(z, t) (the total number of organisms is denoted
by N = NL + ND); the oxygen concentration, Q(z, t); the nutrient concentration, P(z, t) (which could
be represented with a surrogate, the phosphorus concentration). These five unknown functions of the
depth, z and the time, t, are governed by five equations whose form we postulate in what follows. First,
the equation governing the light intensity, I,

∂I

∂z
= −I {αw + αnN} (2.1)

where αw and αn are the light absorption coefficients for water and for the organisms. Serizawa et al.
(2008a) use the same equation in its equivalent integral form. Second, the organism population equations
that are also those used by Serizawa et al. (2008a): they assume a certain daily fractional death rate given
by μ so that:

DNL

Dt
= ∂NL(z, t)

∂t
+ U∗

L
∂NL(z, t)

∂z
= mp(z, t)NL(z, t) − μNL(z, t) (2.2)

and
DND

Dt
= ∂ND(z, t)

∂t
+ U∗

D
∂ND(z, t)

∂z
= μNL(z, t) (2.3)

where U∗
L and U∗

D are the sedimentation velocities of the live and dead organisms (assumed independent
of z and t) and mp(z, T) is the organism reproduction rate. For simplicity, mp is assumed to be linearly
proportional to the light intensity, I:

mp(z, t) = βI(z, t) (2.4)

Later, the dependencies of these parameters on the dissolved oxygen content, Q(z, t), and on the nutrient
content, P(z, t), could be introduced.
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Though the present paper will not include results of the influence of the nutrient and/or dissolved
oxygen dynamics, the following are suggested additional equations governing those added variables.
Serizawa et al. (2008a) suggest the following construction of the nutrient equation. If the nutrient mass
released by the death of one cell is denoted by Pa, then the rate of change of nutrient concentration
due to cell death is +PaDND/dt which, using (2.3), is given by +PaμNL. In addition, if the rate of
biological uptake of nutrient by a single cell is assumed to be proportional to the growth rate, mp, and
therefore proportional to both the light intensity, I (as in (2.4)), and to the nutrient content P, then (2.4)
is replaced by

mp(z, t) = βI(z, t) = β∗I(z, t)P(z, t) (2.5)

and the rate of loss of nutrient concentration due to that uptake is −PbmpNL = −Pbβ
∗IPNL where Pb

is the proportionality factor. The equation for the nutrient then becomes

DP

Dt
= PaμNL − PbmpNL = PaμNL − Pbβ

∗IPNL. (2.6)

We note that when the IP = Paμ/Pbβ
∗ the rate of change of nutrient concentration is zero. We also note

that Serizawa et al. (2008a) include a diffusion term in their version of (2.6) which we include in later
simulations. We also note that Reynolds et al. (2001), in their simulation, incorporate a nutrient model
that involves limits on the growth rates but no differential equation similar to (2.6).

Turning to the oxygen concentration, we note first that CAEDYM (Computational Aquatic
Ecosystem Dynamics Model) (Hipsey et al., 2012) describes a complex oxygen dynamic. We will
consider only the production of oxygen due to photosynthesis and the absorption of oxygen due
to respiration and the decomposition of dead algae. The corresponding differential equation can be
constructed as follows (neither Serizawa et al., 2008a, nor Reynolds et al., 2001, explicitly incorporate
the oxygen in their systems of equations). Denoting by Qa the mass of oxygen consumed when one cell
decomposes and noting that the number of cells dying per unit volume per unit time is given by the
time derivative, DND/Dt, it follows that the rate of change of the oxygen concentration, DQ/Dt, caused
by decomposition is given by −Qa DND/Dt. Using (2.3) this is equal to −QaμNL. In addition if the
mass of oxygen produced by photosynthesis in forming a single cell is denoted by Qb, then the rate of
production of oxygen from photosynthesis is equal to Qb DNL/Dt. Using (2.2), this can be written as
Qb(mpNL − μNL). Putting both rates of change of oxygen mass together yields

DQ

Dt
= −QaμNL + Qb(mpNL − μNL)

= −(Qa + Qb)μNL + Qbβ
∗IPNL (2.7)

using (2.5) for mp. We note that the rate of change of the oxygen concentration is zero when IP =
(Qa + Qb)μ/Qbβ

∗.
It is convenient to non-dimensionalize these equations using characteristic values for the dependent

variables where i = I/I∗, n = N/N∗, nL = NL/N∗ and nD = ND/N∗. Then the equations governing the
light intensity and the algal populations become

∂i

∂z
= −i

{
αw + αnN∗(nL + nD)

}
(2.8)
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∂nL

∂t
+ U∗

L
∂nL

∂z
= (βI∗)iPnL − μnL (2.9)

∂nD

∂t
+ U∗

D
∂nD

∂z
= μnL (2.10)

Moreover, if non-dimensional depth and time variables, x and y, are respectively defined such that

x = αnN∗z, y = βP∗I∗t (2.11)

and we define non-dimensional parameters as follows

γ1 = αw

αnN∗ , γ2 = μ

βI∗P∗ , UL = U∗
LαnN∗

βI∗P∗ , UD = U∗
DαnN∗

βI∗P∗ , (2.12)

then the equations governing the light intensity and algal populations become

∂i

∂x
= −(nL + nD)i − γ1i (2.13)

∂nL

∂y
+ UL

∂nL

∂x
= pinL − γ2nL (2.14)

∂nD

∂y
+ UD

∂nD

∂x
= γ2nL (2.15)

which need to be solved for the unknowns, i, nL and nD.
Appropriate boundary conditions are also needed, both initial conditions at time t = 0 and conditions

at the water surface (assumed located at x = 0). The light intensity at the surface, I(0, t) = I∗i(0, t), will
be some selected input function; an example might be the variation assumed by Aris (1997) during an
equinoctal day, namely,

i(0, t) = sin (π t/12) for 0 < t < 12 and i(0, t) = 0 for t > 12 (2.16)

where t is the time in hours after 6 am. In non-dimensional terms

i(0, y) = sin (πy/12βI∗) for 0 < t < 12 and i(0, y) = 0 for t > 12. (2.17)

At a given time, integration of (2.8) downwards would yield the light intensity at depth. It is also
necessary to choose an initial distribution for the organism concentrations, NL(z, 0) and ND(z, 0) (and
for the nutrient and oxygen concentrations, P(z, 0) and Q(z, 0)). In the calculations of the following
section, we use the initial organism concentration distribution chosen by Aris (1997), namely the
Gamma distribution

n(x, 0) = xe−x. (2.18)

Integration forward in time of an appropriate set of equations for the concentrations (such as (2.14) and
(2.15)) then yields the concentrations for t > 0.
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3. Reduced-order analytical solutions

In some reduced-order cases it is possible to find analytical solutions to the set of equations described
above. While these solutions may have limited applicability they are worth outlining because of the
insights they provide. We have to restrict attention to those circumstances in which

• the oxygen and nutrient variations are set aside (with p = 1 in (2.14) and P∗ = 1 in (2.12))

• algal mortality is neglected so that the governing equations with N = NL (and n = N/N∗) become

∂i

∂x
= −ni − γ1i (3.1)

∂n

∂y
+ U

∂n

∂x
= in. (3.2)

Under these circumstances, we can implement the Galilean coordinate transformation commonly used
in fluid mechanics by defining a modified coordinate system, (ξ , η), such that

ξ = x − Uy and η = y (3.3)

so that

∂

∂x
≡ ∂

∂ξ
;

∂

∂y
≡ ∂

∂η
− U

∂

∂ξ
. (3.4)

Consequently the equations for i(ξ , η) and n(ξ , η) become

1

i

∂i

∂ξ
= −n − γ1 (3.5)

1

n

∂n

∂η
= i. (3.6)

Note that the structure of these equations are such that we can define an algal stream function (see Aris,
1997), ψ , such that

i = e−γ1ξ
∂ψ

∂η
; n = −e−γ1ξ

∂ψ

∂ξ
. (3.7)

Then the single governing equation becomes

∂2ψ

∂η∂ξ
= e−γ1ξ

∂ψ

∂η

∂ψ

∂ξ
. (3.8)

As yet the authors have not been able to find an analytical solution to this equation and therefore further
reduction is necessary. By setting γ1 = 0 and thereby neglecting the light absorption by the water alone,
the governing (3.8) becomes

∂2ψ

∂η∂ξ
= ∂ψ

∂η

∂ψ

∂ξ
(3.9)
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This is a somewhat specialized case of what is known in the literature (see e.g. Rosales, 1978; Weisstein,
1999) as the Thomas’s equation. It has the general solution

ψ(ξ , η) = − ln (X(ξ) + Y(η) + Z). (3.10)

To apply boundary conditions at y = 0 and x = 0 we note that it follows that

n(ξ , 0) = 1

(X(ξ) + Y(0) + Z)

dX(ξ)

dξ
; i(0, η) = − 1

(X(0) + Y(η) + Z)

dY(η)

dη
(3.11)

so that

d[X(ξ) + Y(0) + Z]

[X(ξ) + Y(0) + Z]
= n(ξ , 0)dξ ;

d[X(0) + Y(η) + Z]

[X(0) + Y(η) + Z]
= −i(0, η)dη. (3.12)

Thus, if we define the functions I (η) and N (ξ) as

I (η) =
∫ η

0
i(0, η)dη; N (ξ) =

∫ ξ

0
n(ξ , 0)dξ (3.13)

it follows that

ln (X(ξ) + Y(0) + Z) = N (ξ) + C1; ln (X(0) + Y(η) + Z) = −I (η) + C2 (3.14)

where C1 and C2 are integration constants. Therefore,

X(ξ) + Y(0) + Z = eN (ξ)eC1 ; X(0) + Y(η) + Z = e−I (η)eC2 (3.15)

and to satisfy the conditions at ξ = 0 and η = 0 we must have

X(0) + Y(0) + Z = eC1 = eC2 . (3.16)

It follows that

X(ξ) + Y(η) + Z =
[
eN (ξ) + e−I (η) − 1

] [
X(0) + Y(0) + Z

]
(3.17)

and therefore that

i(ξ , η) = ∂ψ

∂η
= i(0, η)

[
X(0) + Y(η) + Z

]

[X(ξ) + Y(η) + Z]
= i(0, η)e−I (η)

eN (ξ) + e−I (η) − 1
(3.18)

n(ξ , η) = −∂ψ

∂ξ
= n(ξ , 0)

[
X(ξ) + Y(0) + Z

]

[
X(ξ) + Y(η) + Z

] = n(ξ , 0)eN (ξ)

eN (ξ) + e−I (η) − 1
. (3.19)

Aris (1997) presented a more restricted version of this solution that was limited to the specific boundary
conditions (2.17) and (2.18) for the incident light, i(0, η), and the initial population distribution, n(ξ , 0),
and confined to the case without sedimentation, U = 0.
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Fig. 1. Algal population from the analytical reduced-order solution at four times during a day without attenuation of the light by
the water or a sedimentation velocity: the dimensionless concentration, n, is plotted against the dimensionless depth, x.

For the purposes of presenting an illustrative example we will assume Aris’ specific boundary
functions, i(0, η) and n(ξ , 0), as given in (2.17) and (2.18). These yield

I (η) = 12βI∗

π

{
1 − cos (πη/(12βI∗)

}
; N (ξ) = 1 − (1 + ξ)e−ξ , (3.20)

the latter being unchanged with the Galilean coordinate transformation since ξ = x when η = y = 0.
First we present in Fig. 1 typical results in the absence of sedimentation, namely the case presented

by Aris (1997). There is little growth in the morning, but later the algae in layers just beneath the surface
grow rapidly and deprive the algae at greater depth of light so that they grow less rapidly. Aris did not
include sedimentation though he did note that perhaps sedimentation (or convective roll-over) should be
considered.

In Fig. 2 we present sample results in which sedimentation has been included. Clearly the data are
a simple Galilean transformation of the data of Fig. 1. As will be seen in a later paper, when light
attenuation by the water is included, the result deviates from a simple Galilean transformation.

Clearly, from a practical viewpoint, some of the problems with the preceding mathematical solution
are (a) the absence of attenuation of the light by the water and (b) the absence of any organism mortality.
Consequently, the light continues to penetrate to the algae at depth just as it did in Fig. 1 and the absence
of mortality means the organisms do not decay at depth. To rectify these deficiencies in the absence of
more complex analytical solutions, it is necessary to resort to numerical solutions of the system of
equations.
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Fig. 2. Analytical reduced-order results as in Fig. 1 except that a dimensionless sedimentation velocity of U = 3.16 has been
incorporated.

4. Numerical solution methods

The present numerical procedure solves the (2.8–2.10) subject to a surface boundary conditions I(0, t)
and initial conditions on NL(z, 0) and ND(z, 0). The method used is a nested fourth-order Runge–Kutta
procedure that simultaneously integrates downward in the x direction starting at z = 0 and forward in
time, t, starting at t = 0.

In order to validate the numerical code, calculations were first carried out for simple cases without
light absorption by the water, without mortality. Using various increments of depth, δz, and time, δt,
comparison was made with the reduced-order analytical results presented in Figs 1 and 2. With δz =
0.05 m and δt = 0.5 h the numerical results were indistinguishable on the scale of those two figures;
even with δt = 1.0 h the differences were barely perceptible. With this validation we proceed to present
the results of more complex cases using δz = 0.05 m and δt = 0.5 h. [Note that Serizawa et al. used
δz = 0.2 m and δt = 0.12 h.]

5. Physical parameters

For ease of presentation most of the results presented herein will use a set of standard values for the
physical parameters unless otherwise stated:

• In the calculations the light intensity, I, is given in units of μmol/m2s (1 μmol/m2s = 0.218
J/m2s = 218 g/s3). The light intensity at the water surface at noon, I00 = I(0, t), is selected to
be 800 or 400 μmol/m2s, standard values assumed to pertain at the summer and winter solstices,
respectively (Serizawa et al., 2008a). In the present calculations the chosen standard value for
the surface light intensity at noon, I∗, is 800 μmol/m2s.
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• The standard value for the light absorption by water alone is αw = 0.2 m−1 (Yoshiyama &
Nakajima, 2002; Serizawa et al., 2008a).

• The concentrations of algae are given in cells/mm3; note that cells/mm3 ≡ 109cells/m3.
Takamura & Yasuno (1984) use a concentration greater than 1 × 109cells/m3 as defining an
algal bloom.

• The increase in the light absorption per unit concentration of organisms is αn = 2.4 × 10−12

m2/cell (Huisman et al., 2004; Serizawa et al., 2008a). Since the concentrations of algae are
given in cells/mm3, the standard value for αn is 0.0024.

• The maximum growth rate of organisms at the surface on the warmest day = 0.58/day and on
the coldest day = 0.10/day (Serizawa et al., 2008a). These are growth rates averaged over a day:
the corresponding peak growth rates at noon for a daily growth pattern that varies sinusoidally
from zero at 6 am to a peak at noon and back to zero at 6 pm and is zero at night would be π

times these values. Moreover, the calculations employ time in hours. Therefore possible values
of βI∗ on the surface range from 0.0759/h to 0.0131/h. The standard value of β in the present
computations is therefore calculated as βI∗/(3600×218×I∗) in units of s2/g. In the calculations
without the nutrient equation, we simply input the growth rate βI∗ as a constant with some value
from 0.0759/h to 0.0131/h (the chosen standard value is 0.0759/h).

• The standard mortality rate for organisms, μ, is chosen to be that used by Serizawa et al.
(2008a), namely, 0.15/day or 0.00625/h.

• Typical algal sedimentation velocities range from 0.41 m/day (Belov & Giles, 1997) to 0.1 →
1.0 m/day (Reynolds et al., 2001). The standard values for both live and dead algae are
consequently chosen to be 0.41 m/day or 0.017 m/h.

• The form of the initial distributions of live and dead algae at time t = 0 are assumed to be

NL(x, 0) = N∗∗ z

zp
e

1− z
zp and ND(x, 0) = 0 (5.1)

where N∗∗ is the peak value of the initial concentration of live algae and zp is the depth at which
that maximum occurs. The standard values used for N∗∗ and zp are 0.1 cells/mm3 and 0.1 m.
Further comments on these choices are delayed until discussion of the results.

6. Some sample simulations

We first present some solutions to the set of (2.1–2.3). For ease of physical interpretation we will
present the results in dimensional rather than dimensionless form. First, we present in Fig. 3 a 30-h-
long simulation with the standard parameters described above. The live and dead algal concentration
profiles with depth are plotted for the starting time of 6 am, for the following 12 pm, 6 pm and 12 am and
for 6 am and 12 pm the following day (intervals of 6 h). Note that the live population declines during
darkness (6 pm to 6 am) while the population of dead algae grows continuously.

Second, we present in Fig. 4 a 30-day-long simulation with the standard parameter set described
above. The live and dead algal concentration profiles with depth are plotted for noon on the first day
and for noon on 5, 10, 15, 20, 25 and 30 days after that first day. Note that the live population peaks
after about 10 days and then continuously declines as those live algae sink deeper. Correspondingly,
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Fig. 3. A 30-h simulation with the standard parameters. The live (solid lines) and dead (dashed lines) algal concentrations
(in cells/mm3) are plotted against the depth, z (in m) at 6 am (the start), at the following 12 pm, 6 pm and 12 am and at
6 am and 12 pm the following day (intervals of 6 h).

Fig. 4. A 30-day simulation with the standard parameters. The live (solid lines) and dead (dashed lines) algal concentrations (in
cells/mm3) are plotted against the depth, z (in m) at noon on the first day and at noon on 5, 10, 15, 20, 25 and 30 days after that
first day.
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Fig. 5. A 30-day simulation with the standard parameters (same as Fig. 4) except that the sedimentation velocity for live algae
has been set at 0.0085 m/h rather than 0.017 m/h (the velocity of sedimentation of dead algae).

the concentration of dead algae grows continuously though it appears to be tailing off at depth after 25
days. Note, however, that the peak of the dead algal population occurs below that the live population;
this occurs because the light above the dead population peak continues to foster algal growth.

In viewing results such as those in Fig. 4, it is evident that the results may be quite different if the
sedimentation velocities of the live and dead algae were different rather the same. Figure 5 shows the
results for precisely the same parameters as Fig. 4 except that the sedimentation velocity for the live
algae has been set at 0.0085 m/h rather than 0.017 m/h (the velocity of sedimentation of dead algae).

7. Concluding remarks

Later papers will include computed results that include the nutrient and dissolved oxygen concentrations
(though it is challenging to locate values for the coefficients embedded in those equations). These
calculations will continue the identification of the conditions under which the population exhibits a
net increase or decrease over periods as long as weeks. In the long term, perhaps such quantification of
algal dynamics could contribute to the prevention of destructive algal blooms (see e.g. Imberger et al.,
2017).
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