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A Review of the Dynamics
of Cavitating Pumps
This paper presents a review of some of the recent developments in our understanding of
the dynamics and instabilities caused by cavitation in pumps. Focus is placed on pres-
ently available data for the transfer functions for cavitating pumps and inducers, particu-
larly on the compliance and mass flow gain factor, which are so critical for pump and
system stability. The resonant frequency for cavitating pumps is introduced and con-
texted. Finally, emphasis is placed on the paucity of our understanding of pump dynamics
when the device or system is subjected to global oscillation. [DOI: 10.1115/1.4023663]

1 Introduction

Since the first experimental measurements many years ago of
the complete dynamic transfer function for a cavitating pump
[1,2], there has been a general recognition of the importance of
various components of these transfer functions (particularly the
cavitation compliance and mass flow gain factor) in determining
the dynamic characteristics and instabilities of systems incorporat-
ing such pumps (see, for example, Refs. [3–7]). The present paper
attempts to summarize some of the recent understandings and to
evaluate the current state of knowledge of transfer functions for
cavitating pumps.

2 Pump Transfer Function Data

The linear dynamic transfer matrix for a pump is denoted here
by TPij and is defined by
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where P and m are the complex, linearized fluctuating total pres-
sure and mass flow rate and subscripts 1 and 2 refer to the pump
inlet and discharge, respectively (the reader is referred to Ref. [8]
for extensive discussion of hydraulic transfer functions and their
properties). In general, TPij will be a function of the frequency, x,
of the perturbations and the mean flow conditions in the pump,
including the design, the cavitation number, r, and the flow coeffi-
cient. In this review, we will focus primarily on the second of
these equations and on TP21 and TP22, since cavitation has a major
effect on these characteristics and they therefore have a critical
influence on the potential instabilities in the fluid system in which
the pump is installed [7]. But it is valuable in passing to note that
TP12 ¼ �R� jxL, where R is the pump resistance and L is the
pump inertance (valuable measurements of these dynamic charac-
teristics for a noncavitating pump were first made by Ohashi [9]
and by Anderson et al. [10]). In the absence of cavitation and
compressibility effects, TP11 ¼ 1, but its departure from unity due
to the dependence of the pressure rise on cavitation number at
fixed flow rate may also be important, particularly at very low
cavitation numbers.

The transfer function and other pump dynamic characteristics
presented in this paper are nondimensionalized in the manner of
Brennen et al. [2]. Specifically, the frequency, x, is nondimen-
sionalized as x0 ¼ xh=Ut, where h is the peripheral blade tip
spacing at the inlet to the pump or inducer (h ¼ 2pRt=N, where Rt

is the inlet tip radius and N is the number of main blades) and Ut

is the inlet tip speed (Ut ¼ XRt, where X is the rotational speed in

rad/s). Then, the compliance, C, and mass flow gain factor, M, are
defined by expanding the transfer function elements, TP21 and
TP22, at low frequency in power series in jx,

TP21 ¼ �jxCþ ðjxÞ2C� þ… (2)

TP22 ¼ 1� jxM þ ðjxÞ2M� þ… (3)

The compliance, C, and mass flow gain factor, M, are nondimen-
sionalized by

CNX2

4p2Rt
and

MNX
2p

(4)

Note that the above nondimensionalization scheme differs from
that used in Brennen [8] but is preferred, since each blade pro-
duces cavitation that contributes to C and M.

Those first experimental measurements of the complete
dynamic transfer function for a cavitating pump [1,2] were carried
out in water with a series of model inducers, including a scale
model of the low pressure LOX inducer in the space shuttle main
engine (SSME). A typical photograph of the 10.2-cm-diameter
version of that inducer under moderate cavitating conditions is
included as Fig. 1, which illustrates the tip clearance backflow and
cavitation that is typical of many inducers [8].

Measured transfer functions for that 10.2-cm-diameter SSME
inducer operating in water at 6000 rpm, a flow coefficient of
/1 ¼ 0:07, and various cavitation numbers, r, are reproduced in
Fig. 2 (left), where the four transfer functions elements are each
plotted against a dimensionless frequency: the real parts as the
solid lines and the imaginary parts as dashed lines. We should
note that this data necessarily has substantial uncertainty associ-
ated with it (primarily because of the difficulty of accurately
measuring the unsteady flow rates [1,2]) and therefore polynomial
fits in the Laplace variable jx were produced in order to extract
quantities like R, L, C, and M (the polynomial fits to Fig. 2 (left)
are shown in Fig. 2 (right)).

An up-to-date collection of the available data on the compli-
ance and the mass flow gain factor is presented in Fig. 3, where
those quantities are plotted against the cavitation number. The
data on the 10.2-cm SSME inducer in water was extracted from
Fig. 2; the data for the 7.6-cm SSME inducer is more scattered
because of greater uncertainty in the measurements of the transfer
functions for that smaller model [1]. The old J2 oxidizer data was
derived by Brennen and Acosta [11] using test data and a heuristic
dynamic model of the test facility. The LE-7 test data in liquid
nitrogen was obtained by Shimura [12]. The LE-7A data is the
only LOX data and was also extracted from test data by Hori and
Brennen [13]. For a full description of the derivation of the J2,
LE-7, and LE-7A data extraction, the reader is referred to
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Refs. [11–13] and references therein. All of this data is subject to
significant uncertainty (due to a combination of uncertainty in the
hypothesized dynamic model or in the measurement of the
unsteady flow rates), though the original SSME data is probably
the most reliable, since it is based on measurements of the
complete dynamic transfer function and not on any hypothesized
dynamic model. Nevertheless, with one exception, both the com-
pliance and mass flow gain factor data exhibit significant consis-
tency, in which both C and M are inversely proportional to r. The
exception is the LE-7A LOX data for the mass flow gain factor;
whether this discrepancy is within the uncertainty band or an
actual LOX thermal effect remains to be seen.

Before further discussion of this data collection, we digress
briefly to introduce a property in the dynamics of cavitating
pumps that has not received sufficient attention in the past,
namely, the fundamental resonant frequency of a cavitating pump.

3 Resonant Frequency of a Cavitating Pump

It has been known for a long time that a cavitating inducer or
pump may exhibit a violent surge oscillation at subsynchronous
frequencies that results in very large pressure and flow rate oscil-
lations in the system of which the pump is a part [10,14–19]. In
the early days, this was known as “auto-oscillation,” but the pre-
ferred name in recent times has been “cavitation surge.” It typi-
cally occurs at low cavitation numbers just above those at which
cavitation head loss becomes severe. Often, it is preceded by a
rotating cavitation pattern (see, for example, Refs. [19–22]). Fig-
ure 4 reproduces data on the frequencies of oscillation observed
for the model SSME inducer and for a helical inducer by Braisted
and Brennen [18]; they also plotted a rough empirical fit to that
data, which approximated the dimensionless surge frequency by
ð5rÞ1=2

. More recently, we recognize that this “natural frequency
of a cavitating pump” has a more fundamental origin as follows:
Almost any reasonable, proposed dynamic model for a cavitating
inducer or pump (such as that on the right of Fig. 4 designed to
simulate the parallel streams of main flow and tip clearance flow)
that incorporates both the pump inertance, L, and the cavitation
compliance, C, clearly exhibits a natural frequency, XP, given by

XP ¼
1

ðLCÞ1=2
(5)

Using the data for the SSME LOX inducer from Brennen [8], we
can approximate L and C by

L � 10

Rt
and C � 0:05 Rt

rX2
(6)

Fig. 2 Left: Typical transfer functions for a cavitating inducer obtained by Brennen et al. [2] for the 10.2-cm-diameter SSME
inducer operating in water at 6000 rpm and a flow coefficient of /1 ¼ 0:07. Data is shown for four different cavitation numbers,
r ¼ (A) 0.37, (C) 0.10, (D) 0.069, (G) 0.052, and (H) 0.044. Real and imaginary parts are denoted by the solid and dashed lines,
respectively. The quasistatic pump resistance is indicated by the arrow. Right: Polynomial curves fitted to the data on the left.
Adapted from Brennen et al. [2].

Fig. 1 Scale model of the low pressure liquid oxygen pump
impeller for the space shuttle main engine (SSME) in moderate
cavitating conditions in water
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so that, substituting into Eq. (5),

XP

X
� ð2rÞ1=2

or X0P �
XPh

Ut
� ð5rÞ1=2

(7)

This is precisely the same as the result proposed empirically by
Braisted and Brennen [18] and shown on the left in Fig. 4. We will
refer to this as the natural frequency of a cavitating pump. Indeed
the data of Fig. 4 (left) displays further detail of this cavitating
pump property. There is a manifest trend for the frequency to
decrease somewhat with flow coefficient, and this seems certain to
be the result of an increasing volume of cavitation and increasing
compliance as the blades are loaded up at lower flow coefficients.

It is important to emphasize that this does not necessarily mean
that the major system instability oscillations occur at this fre-
quency. The study of Hori and Brennen [13] discussed later in this
paper shows, however, that major instabilities or resonances can
occur when this natural frequency for a cavitating pump coincides
with other system frequencies, such as an organ pipe mode in a
suction or discharge tube.

4 Phase Lags in the Cavitation Dynamics

Several researchers [23–25] have pointed out that the compli-
ance and mass flow gain factor may become complex as the fre-

quency increases and that this can have important consequences
for launch vehicles. This is clearly equivalent to significant values
of the quadratic terms in the expansions (8) and (9), but Rubin
[25] puts the values of C� and M� in terms of a compliance phase
lag and a mass flow gain factor phase lag. One can visualize these
phase lags as delays in the cavitation volume response to the pres-
sure and incidence angle perturbations, respectively. In this paper,
we will follow Rubin in writing the expansions (8) and (9) up to
and including the quadratic order as

TP21 ¼ �jxC 1� jx0sCf g (8)

TP22 ¼ 1� jxM 1� jx0sMf g (9)

where sC and sM are the nondimensional compliance phase lag
and mass flow gain factor phase lag, respectively. Data on these
quadratic terms in the frequency expansions is, of course, subject
to even greater uncertainty than the linear terms that lead to the
compliance and mass flow gain factor. Nevertheless, in the light
of the increasingly apparent importance of these terms, we have
extracted values of sC and sM from the data of Fig. 2 (right) and
plotted them against cavitation number in Fig. 5. Note that the
uncertainties in this data probably exceed 50%. Nevertheless, we
might suggest that the phase lags appear to be roughly independ-
ent of the cavitation number and to be somewhat greater for the
compliance than for the mass flow gain factor.

Fig. 3 Dimensionless cavitation compliance (left) and mass flow gain factor (right) plotted against tip cavitation number for:
(a) Brennen et al. [2] SSME 10.2-cm model inducer in water (solid squares); (b) Brennen et al. [2] SSME 7.6-cm model inducer in
water (open squares); (c) Brennen and Acosta [11] J2-Oxidizer (circles) analysis; (d) Hori and Brennen [13] LE-7A LOX data
(solid triangles); (e) Shimura [12] LE-7 LN2 data (open triangles)

Fig. 4 Left: Nondimensional cavitation surge frequency as a function of cavitation number for the SSME model inducers at var-
ious speeds and flow coefficients, as shown. The theoretical prediction is the dashed line, ð5rÞ1=2 (adapted from [18]). Right: A
dynamic model of the main flow and the parallel tip clearance backflow in a cavitating inducer.
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It may be valuable to make some tentative suggestions regard-
ing these phase lags. It seems physically reasonable to envisage
that a stream of cavitating bubbles (for example, that carried for-
ward by the backflow) would not respond immediately to the inlet
pressure and flow rate fluctuations but would exhibit a phase lag
delay that would increase with the frequency of the perturbations.
Brennen [23] investigated the compliance of a simple stream of
cavitating bubbles at various frequencies, cavitation numbers, and
cavitation nuclei sizes. Figure 6 reproduces several figures from
that paper, which show that the compliance becomes increasingly
complex as the frequency of the perturbations increases and that
the negative imaginary parts of the compliance, which develop as
the frequency increases, represent just the kind of phase lag that
we are addressing here (the magnitudes of the compliance in

Fig. 6 are not relevant to the current discussion). It is particularly
interesting to observe that the reduced frequency plotted horizon-
tally is defined as fLs=Us, where f is the perturbation frequency (in
Hz) and Ls and Us are, respectively, the length and velocity of the
simple stream of cavitating bubbles studied. Note from Fig. 6 that
the phase lag becomes important when the reduced frequency
increases beyond a value of about 0.1. Note also that the fre-
quency, fLs=Us � 1, is a kinematic frequency associated with the
entry and exit of bubbles from the cavitating zone rather than a
dynamic frequency associated with the oscillation of the cavitation
volume.

Let us consider the corresponding reduced frequency for the
backflow cavitation in the experiments of Brennen et al. [2] and
Fig. 2. For a 10.2-cm-diameter inducer at a speed of 6000 rpm, a
flow coefficient of /1 ¼ 0:07 (so that Us � 200 cm=s), and an
estimate length Ls of about 10 cm, the actual frequency that corre-
sponds to fLs=Us ¼ 1 is f¼ 20 Hz. This corresponds well to the
frequency in Fig. 2 at which the imaginary parts of the compliance
are observed to become well developed. However, this proposed
physical explanation of the compliance phase lag also has some
worrying implications. It suggests that the scaling of the phase
lags may be a cause for concern, for, at much higher rotational
speeds, the phase lag would be much smaller and, consequently,
any stability benefit that might accrue from it would be much
smaller. However, in the absence of any hard evidence for the
scaling of these quadratic effects, all we can conclude at present is
that more measurements over a broader range of rotational speeds
is needed in order to establish appropriate scaling for the phase
lags.

We should note before leaving this topic that Otsuka et al. [24]
show that a blade cavitation model can also yield complex com-
pliances and mass flow gain factors that correspond to time lags
qualitatively similar to those presented in Fig. 5.

5 Comments on Some Analytical Models

We comment in the conclusions on the difficulties with any
detailed computational fluid dynamics (CFD) approach that aims

Fig. 5 Nondimensional time lags for the compliance, sC , and
the mass flow gain factor, sM , as functions of the cavitation
number for the SSME 10.2-cm model inducer in water. Taken
from the data of Brennen et al. [2].

Fig. 6 Real and imaginary parts of the dimensionless compliance (per bubble) of a stream of cavitating bubbles as func-
tions of a reduced frequency based on the length of the cavitation zone, Ls, and its typical velocity, Us. Results shown for
several cavitation numbers, r, and bubble nuclei size, rN (from Ref. [23]).
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to predict the dynamic transfer function for a cavitating inducer. It
seems clear that much progress in developing reduced order mod-
els for cavitation in the complex geometry of an inducer (and, in
particular, for the backflow cavitation) will be needed before this
approach will provide practical and useful guidance. However, in
the short-term crude, one-dimensional models and lumped param-
eter models (see, for example, Cervone et al. [26]) guided by the
existing data base can give useful benchmarks. The bubbly flow
model of Brennen [27] (see Fig. 7 (left)) incorporated several of
the basic phenomena that we now know are inherent in the
dynamic response of an inducer or pump, in particular, the com-
pliance of the bubbly stream within the flow (though the compres-
sibility of that bubbly flow had to be represented by an empirical
constant, K0) and the magnitude of the void fraction fluctuations
produced by the fluctuating angle of attack (represented by a sec-
ond empirical factor of proportionality, M0). These two features
respectively lead to dynamic waves and to kinematic waves in the

bubbly blade passage flow. A typical transfer function derived
from the bubbly flow model is reproduced in Fig. 7 (right), and
the similarity with the transfer functions in Fig. 2 (right) is encour-
aging, even though the two constants K0 and M0 were empirically
chosen.

The measured compliances and mass flow gain factors for the
SSME inducers and for the J2 oxidizer inducer are reproduced in
Fig. 8 in order to compare that data with several predictions from
the bubbly flow model (dashed lines for several choices of K0 and
M0). The predictions appear to provide a useful benchmark for
future data evaluation and comparison.

Figure 8 also includes predictions from the blade cavitation
analysis presented earlier by Brennen and Acosta [11]. That anal-
ysis has the advantage that it does not contain any empirical pa-
rameter as such. However, it assumes that all the cavitation is
contained within a single cavity attached to each blade. Moreover,
the comparisons in Fig. 8 suggest that such a model does not yield

Fig. 7 Left: Schematic of the bubbly flow model for the dynamics of cavitating pumps. Right: Transfer functions for the SSME
inducer at /1 ¼ 0:07 calculated from the bubbly flow model (adapted from Ref. [27]).

Fig. 8 Dimensionless cavitation compliance (left) and mass flow gain factor (right) plotted against tip cavitation number for:
(a) Brennen et al. [2] SSME 10.2-cm model inducer in water (solid squares); (b) Brennen et al. [2] SSME 7.6-cm model inducer in
water (open squares); (c) Brennen [27] bubbly flow model results (short dash lines); (d) Brennen and Acosta [11] SSME low
pressure oxidizer turbopump blade cavitation prediction (dot dash line); (e) Brennen and Acosta [11] J2-Oxidizer data (circles);
(f) Brennen and Acosta [11] J2-Oxidizer blade cavitation prediction (long dash line); (g) Yonezawa et al. [28] quasistatic CFD
cascade data (diamonds)
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Fig. 9 The four hydraulic system configurations whose dynamic responses are compared (reproduced from
Ref. [13])

Fig. 10 Model calculations (upper graphs) and test facility measurements (lower graphs) of the pump inlet pressure (left) and
the inducer discharge pressure (right) from the cold test facility without an accumulator, the first configuration (reproduced
from Ref. [13])
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very useful results, which is not surprising when photographs,
such as Fig. 1, indicate that the cavitation is primarily bubbly cav-
itation and not blade cavitation [8].

Also included in Fig. 8 are some quasistatic compliances and
mass flow gain factors very recently derived by Yonezawa et al.
[28] from steady CFD calculations of the cavitating flow in linear
cascades. They have also performed calculations at a series of flow
coefficients that show a general trend of increasing compliance and
mass flow gain factor as the flow coefficient is decreased.

6 Resonances in Globally Oscillating Systems

The research literature clearly exhibits a strong bias toward
investigations of flow instabilities in systems which are essentially
at rest, usually in a research laboratory test stand. While this bias is
understandable, it can be misleading, for it tends to mask the differ-
ence between such flow instability and the resonant response in a
flow system subject to global fluctuation. This is particularly an
issue with launch vehicle propulsion systems, for they can exhibit
some serious resonances with the oscillating vehicle structure. Fol-
lowing the approach originally developed by Rubin [3], Hori and
Brennen [13] recently constructed a time-domain model for proto-
typical pumping systems in order to examine the response of those
systems to globally imposed acceleration, a(t). We review those
results here, for they present a case in which the static ground-
based systems appear free of serious instability, but the same sys-
tem exhibits serious resonance when subjected to global oscillation.

Hori and Brennen [13] constructed dynamic models for four
different configurations used during the testing and deployment of
the LOX turbopump for the Japanese LE-7A rocket engine. As
sketched in Fig. 9, these configurations include three ground-
based facilities, two cold-test facilities (one with a suction line

accumulator and the other without), and a hot-fire engine test fa-
cility. The fourth configuration is the flight hardware. All four
configurations include the same LE-7A turbopump, whose cavita-
tion compliance and mass flow gain factor were extracted from
the ground tests and were included in Fig. 3.

The dynamic model for these LE-7A turbopump systems incor-
porated the time domain equivalent of the pump transfer function,
including pump cavitation compliance and mass flow gain factor
terms as well as the known steady pump performance characteris-
tic. It also included lumped parameter models for the storage tank
(fuel or oxidizer), the accumulator, and the valves, as well as com-
pressible, frictional flow equations for the flows in the feedlines.
The assumed boundary conditions at inlet to and discharge from
these hydraulic systems were an assumed storage tank pressure
and the back pressure in the combustion chamber or catchment
tank. Additional pseudopressure terms [29] were included in the
flight configuration to account for the globally imposed accelera-
tion, a. These model equations were solved numerically in the
time domain using the traditional methods of fluid transients
[8,30], including the method of characteristics for the feedlines.
Low-level white noise pressure perturbations were injected at the
pump inlet in order to provide a trigger for potential cavitation
surge, should that be inclined to occur. This technique is based on
the assumption that the cavitation surge (and other dynamic
responses) observed in the ground-based tests are similarly trig-
gered by random pressure noise.

7 Comparing the System Response and Stability

The results that Hori and Brennen [13] obtained for the four
LE-7A test systems are presented in Figs. 10–13. In the case of

Fig. 11 Model calculations (upper graphs) and test facility measurements (lower graphs) of the pump inlet pressure (left) and
the inducer discharge pressure (right) from the cold test facility with an accumulator, the second configuration (reproduced
from Ref. [13])
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the first three ground-based configurations, comparison is made
with pressure spectra obtained during the system testing.

The calculated and measured spectra for the first configuration
are shown in Fig. 10 and show excellent agreement. For a cavita-
tion number greater than 0.04, the pressure fluctuations are very
small indeed. However, when the cavitation number is decreased
into the range 0.033 to 0.020, pressure fluctuations at a nondimen-
sional frequency of 0.22 become dominant; as described earlier,
this is the natural frequency of the cavitating pump, and the
increase occurs when there is a resonance between that natural
frequency (which decreases as r decreases) and the third organ
pipe mode of oscillation of the suction line. However, even these
resonant pressure oscillations are inconsequential; for example,
the amplitude at the inducer discharge is less than 0.4% of inducer
tip dynamic pressure. Note that the spectra also include very small
pressure fluctuations at nondimensional frequencies of 0.13 and
0.31; these correspond to the second and the fourth organ pipe
modes of the suction line.

Sample results for the second configuration, a different cold-
test facility with an accumulator, are presented in Fig. 11. The
most obvious change from the first configuration is the appearance
of a natural resonant oscillation of the flow between the accumula-
tor and the cavitation in the pump. This occurs because of the
short length (and therefore small inertance) of fluid between
the accumulator and the cavitation. As the cavitation number
decreases and the cavitation compliance increases, the frequency
of this natural cavitation surge decreases. For r > 0:040, the in-
ducer pressure fluctuations involved are very small. But when r is
reduced to 0.037, a double resonance occurs, involving the natural
frequency of the cavitating pump, the frequency of oscillation of
the fluid between the accumulator and the pump, and the third
organ pipe mode of the feedline between the tank and the pump.

This double resonance results in a sudden, substantial increase in
the magnitude of the pressure oscillations. With further decrease
in r to 0.035, the fluctuation magnitude decreases again as the
double resonance has passed. The corresponding experimental
spectra exhibit good qualitative agreement with the model calcu-
lations; the higher harmonics observed in the test and which do
not appear in the model calculations are probably caused by non-
linear effects. However, despite this double resonance, both the
tests and the calculations exhibit very small pressure oscillation
amplitudes and less than 1% of inducer tip dynamic pressure, and
as in the first configuration, this magnitude is inconsequential.

Spectra for the third configuration, the hot-firing engine test,
are shown in Fig. 12. As in the second configuration, the response
is dominated by a strong resonance of the fluid between the pump
and the accumulator. The frequency of this resonance decreases
from 0.5 to 0.2 as the cavitation number is decreased from 0.05 to
0.02 (the frequencies are higher than in the second configuration
because the accumulator is much closer to the turbopump). Again,
the model results appear to simulate the test data very well,
matching both the frequency and the amplitude. However, the
pressure amplitudes are still very small, less than 0.01% of the in-
ducer tip dynamic pressure. Even when the peak frequency
matches one of the suction line organ pipe frequencies, no large
pressure oscillation magnitudes occur, because the suction line in
the hot-firing engine test facility is very long and the suction line
resistance is large.

Having, to some extent, validated the model calculations, Hori
and Brennen [13] then turned to the flight configuration. First, the
response of the flight configuration without imposed acceleration
was investigated and only very small pressure oscillations (less
than 0.01% of inducer tip dynamic pressure) and flow rate oscilla-
tions (less than 0.01% of mean flow) were calculated. Thus, like

Fig. 12 Model calculations (upper graphs) and test facility measurements (lower graphs) of the pump inlet pressure (left)
and the inducer discharge pressure (right) from the hot-firing engine test, the third configuration (reproduced from Ref. [13])
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the first three configurations, the flight configuration is very stable
in a nonaccelerating frame. Then, the model was used to examine
the response of the flight configuration in a sinusoidally accelerat-
ing frame with an acceleration amplitude of 0:1 m=s2 at various
nondimensional frequencies ranging from 0 to 0.5. The magnitude
0:1 m=s2 would be characteristic of the background excitation
experienced in the rocket environment. Typical model results
under noncavitating conditions are shown in the upper graphs of
Fig. 13 and are similar in magnitude to the results for the ground-
based calculations; the conclusion is that, in the absence of cavita-
tion, the system response is quite muted with pressure oscillation
magnitudes less than 0.05% of inducer tip dynamic pressure and
flow rate oscillation magnitudes less than 0.02% of mean flow.

Finally, Hori and Brennen [13] present their key result, namely,
the response of the flight configuration to the same range of global
oscillation (an acceleration magnitude of 0:1 m=s2 for a range of
oscillation frequencies) when the pump is cavitating. The lower
graphs of Fig. 13 present the results for the lowest cavitation num-
ber examined, namely, r ¼ 0:02. It is clear that the result is a vio-
lent resonant response with amplitudes about two orders of
magnitude greater than in the absence of cavitation. The pressure
oscillation magnitudes are more than 2% of inducer tip dynamic
pressure, and the flow rate oscillation magnitudes are more than
20% of mean flow. Under these cavitating conditions, the largest
flow rate magnitudes occur between the accumulator and the in-
ducer at all frequencies, and the largest pressure amplitudes occur
at the inducer discharge. Thus, the flow rate oscillation between

the accumulator and the inducer dominates the overall response
and excites the rest of the system like an oscillating piston. The
suction line from the tank to the accumulator also plays a role,
albeit a secondary role. When the frequency of the “piston” coin-
cides with an organ pipe mode of the compressible liquid between
the tank and the cavitating inducer, the entire system exhibits a
peak response, and this happens at each of those organ pipe
modes. There is also an important global response maximum near
the natural frequency of the cavitating pump (0.3); at higher fre-
quencies, the response dies off rather rapidly.

Thus, the model calculations demonstrate how a violent reso-
nant response can occur in the accelerating flight environment
when pump cavitation is present and that this response can occur
even when all the ground tests (and the model flight calculations
without cavitation) indicate a stable and well-behaved response.
The difficulty of duplicating these adverse flight environments in
any ground test—and therefore of examining such an adverse con-
dition—makes accurate model calculations an almost essential
design tool.

8 Concluding Remarks

In concluding this review, we should remark that, despite sig-
nificant progress in understanding the dynamics of cavitation in
pumps and inducers, there is much that remains to be accom-
plished before an adequate pump system design procedure is

Fig. 13 Model calculations for the flight configuration subject to global acceleration. Upper graphs: in the
absence of pump cavitation. Lower graphs: when the pump cavitation number is r ¼ 0:02. Pressure ampli-
tudes (left) and flow rate amplitudes (right) over a wide range of different oscillation frequencies and an
oscillating acceleration magnitude of 0:1 m=s2. Solid, dashed, and dotted lines, respectively, present the
pump discharge, inducer inlet, and tank outlet quantities (reproduced from Ref. [13]).
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completed. It is, perhaps, most useful in these concluding remarks
to identify some of the most glaring gaps in our knowledge.

In terms of accomplishments, we do have a reasonable data
base supporting our preliminary understanding of the scaling of
the dynamic transfer function with pump size, pump rotating
speed (admittedly within a fairly narrow speed range), and cavita-
tion number. The effect of flow coefficient is less well-
established, due to the limited range of flow coefficients for which
transfer functions have been measured. However, most of that
data is in water at roughly normal temperatures. Therefore, the
first major deficiency is the lack of experimental data for the ther-
mal effects on the dynamics. Thermal effects on cavitation and on
the steady state performance of pumps have been extensively
studied and are well known; for example, in the context of cryo-
genic pumps (see, for example, Brennen [8]), thermal effects in
liquid oxygen are important and they are pervasive in liquid
hydrogen pumps. But apart from some preliminary tests [2,31,32]
and some very limited theoretical considerations [23], little is
really known about the thermal effects on the dynamic character-
istics of cavitating pumps. Testing in fluids other than water is
very limited, though the recent work of Yoshida et al. [32] in liq-
uid nitrogen suggests little thermal effect on cavitation surge. The
lack of data is, in large measure, due to the absence of dynamic
flow meters for nonaqueous environments. Electromagnetic flow
meters have proved invaluable in the water tests, in part, because
of their unique ability to measure the cross-sectionally integrated
flow rate, irrespective of axisymmetric velocity profile and, in
part, because of their dynamic capability. (Electromagnetic meters
for cryogenic fluids are not out of the question and should be con-
structively investigated). It seems likely that thermal effects could
substantially dampen the dynamic characteristics, and if so, it
would be valuable to confirm or refute this.

Another gap that has become evident in recent years and
that has a significant impact on pump system stability is the
effect of complex values for the compliance and mass flow
gain factor. Though we have described above some very crude
data on the phase lags for compliance and mass flow gain fac-
tor, this data has very large uncertainties associated with it,
and we have little knowledge about how the values scale with
speed or size. These effects and their uncertainty strongly sug-
gest that a more extensive transfer function data base is needed
that would not only examine the thermal effects but also
extend the data to higher speeds. Such experimental investiga-
tions should also investigate the nonlinear effects that obvi-
ously limit the amplitude of the cavitation instabilities and the
resonant responses.

Another major gap in our current understanding has been evi-
dent for some time through the work of Rubin [3,4] and others on
the response of pump systems in globally oscillating environments
and was particularly evident in the work of Hori and Brennen [13]
described above. There are some very real questions about the
dynamic response of cavitation and of cavitating pumps subjected
to translational or rotational acceleration. The only surefire way to
answer these questions is to conduct experiments with a pump
loop experiment mounted on a shaker table that can impose sub-
stantial global oscillations up to frequencies of the order of 50 Hz
or more. Given the availability of huge shaker tables for earth-
quake engineering research and the known destructive consequen-
ces of instabilities, such as the Pogo instability of liquid-propelled
rockets, it is surprising that such experiments have not been car-
ried out in the past.

Finally, I can anticipate that some will promote the use of com-
putational models for cavitating flows in order to try to bridge
these gaps. Though there have been some valuable efforts to de-
velop CFD methods for cascades (see, for example, Iga et al. [33]),
the problem with this suggestion is that accurate numerical treat-
ments for cavitating pumps that will adequately represent both the
nonequilibrium character of cavitation and adequately respond to
flow fluctuations are still in a very early stage of development.
Codes that can also handle the complex geometry and turbulence

of the flow in an inducer, including the tip clearance backflow, are
many years away. It seems clear that much progress will be
needed in the development of reduced-order models for cavitation
before the computational approach can produce useful, practical
results.
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Nomenclature

a ¼ global acceleration of the pumping system
C ¼ cavitation compliance

C�;M� ¼ quadratic compliance and mass flow gain factor
coefficients

f ¼ frequency in Hz
h ¼ inducer blade tip spacing, 2pRt=N
j ¼ ð�1Þ1=2

K0;M0 ¼ bubbly flow model parameters
L ¼ pump inertance

Ls ¼ length of the cavitation zone
m ¼ complex fluctuating mass flow rate
M ¼ mass flow gain factor
N ¼ number of main inducer blades
P ¼ complex fluctuating total pressure
R ¼ pump resistance
Rt ¼ radius of the inducer tip

TPij ¼ pump transfer function elements
Us ¼ velocity in the cavitation zone
Ut ¼ velocity of the inducer tip
/1 ¼ inlet flow coefficient
r ¼ cavitation number
q ¼ liquid density

sC; sM ¼ phase lags of the compliance and mass flow gain factor
x0 ¼ dimensionless frequency, xh=Ut

x ¼ dimensional radian frequency
X ¼ frequency of rotation of the pump

XP ¼ natural cavitation frequency of the inducer
X0P ¼ dimensionless natural cavitation frequency of the in-

ducer, XPh=Ut

Subscripts

1 ¼ inlet to a component
2 ¼ discharge from a component
B ¼ pertaining to the tip clearance flow
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