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ABSTRACT

This paper presents a numerical investigation of some of the phenomena involved in the nonlinear dynamics
of a homogeneous bubbly mizture bounded by an oscillatory wall. This problem represents an idealization of
the flow in a typical vibratory cavitation damage device. Results are presented showing that wave steepening
and ultimately shock wave formation occur as the magnitude of the excitation increases. The propagation
characteristics of the waves through the bubbly medium have also been studied. Strong pressure peaks of short
duration, corresponding to the coherent collapse of the bubble clusters, are computed and accurately resolved,
both in space and time. As the amplitude of the ezcitation is increased a series of period doubling bifurcations
occurs. The nonlinear dynamics of the oscillating bubble cluster are observed to follow a subharmonic route

to chaos.

1. INTRODUCTION

The collapse of a ciuster of bubbles in close prox-
imity to each other, commonly referred to as cloud
cavitation, is responsible for severe cavitation noise
and damage. The destructive effects associated with
the growth and collapse of cloud cavitation have re-
ceived considerable attention (Knapp [1], Bark and
van Berlekom (2], Soyama et al. [3]) and are still the
object of intensive research (Reisman et al. [4]). The
experimental observations of cloud cavitation (for ex-
ample, Wade and Acosta [5], Kubota et al. [6], Le et
al. [7], de Lange et al. [8]) consistently show that
the radiated noise produced by cloud cavitation is
characterized by very strong pressure peaks of short
duration.

A few analytical efforts have addressed the same
issues. Hansson and Merch {9] were among the first
to suggest that the concerted collapse of a cluster of
bubbles involves the creation of an inwardly prop-
agating shock wave. They also suggested that the

focusing of the shock at the center of the cloud was
responsible for the enhancement of cavitation noise
and damage. Experimental observations by Lauter-
born et al. [10] show strong interactions between sin-
gle bubbles and give evidence of a ‘highly coopera-
tive system’. Smereka and Banerjee [11] studied the
chaotic motion of a cloud of bubbles. Wang and Bren-
nen ([12], [13]) have studied the nonlinear growth and
collapse of a bubble cloud and their computations
show that geometric focusing may lead to very large
local pressures.

In this paper we study the nonlinear dynamics of
a cloud of bubbles bounded by a single, plane oscil-
lating wall. This one-dimensional analysis may be
regarded as an idealization of a vibratory cavitation
damage device (Knapp et al. [14]). Details of the nu-
merical scheme have been presented elsewhere (Colo-
nius et al. [15]) and this paper will focus on the phys-
ical phenomena manifest by the calculations. Violent
pressure peaks result from the periodic cloud collapse
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and the dependence of the pressure perturbations on
the flow parameters is analyzed. Moreover, depend-
ing on the frequency and amplitude of the wall mo-
tion, the dynamics of a bubble cloud follow a subhar-
monic route to chaos.

2. GOVERNING EQUATIONS AND NU-
MERICAL APPROACH

The continuum equations governing the flow of a ho-
mogeneous bubbly mixture (d’Agostino and Brennen
[16], Biesheuvel and van Wijngaarden [17]) have been
discussed in detail elsewhere (d'Agostino and Bren-
nen (18], Brennen [19]) and the present numerical
method is discussed in Colonius et al. [15].

Neglecting the contributions of gravity and viscos-
ity, the continuity and momentum equations for the
bubbly mixture are:
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where p is the mixture density, p is the pressure in
the liquid, u; is the mixture velocity, z; is a spatial
coordinate and t is the time. The mixture density
is made dimensionless by the constant liquid den-
sity, pr, the lengths, z;, and the bubble radius, R,
are normalized by an equilibrium bubble radius Ry,
the mixture velocity, u;, is normalized by the bub-
ble natural frequency, wg times the equilibrium bub-
ble radius, the pressure, P is measured relatlve to
its equilibrium value, py, and nermalized by prriw?.
Time, ¢, is normalized by 1/wg. The bubble radius
R(x;,t) is related to the pressure in the mixture by
the Rayleigh-Plesset equation:
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where We is the Weber number, ¢ is the cavitation
number, 4 is the ratio of specific heats and dp is

+ S(-R)+P=0,

the damping coeflicient in the bubble dynamics which
is discussed later. The mixture density, p, and the
bubble radius, R, are related as follows:
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where oy is the initial void fraction of the mixture.

As discussed in Colonius et al. [15], a major issue
in the numerical analysis of the nonlinear dynamics of
the bubbly mixture is the choice of the magnitude of
the damping coefficient dp, (van Wijngaarden [20]).
This choice must not only provide a realistic descrip-
tion of the phenomena involved in the dynamics of
the bubble cloud (amount of growth, violence of the
collapse, number of rebounds, etc.) but must insure
suflicient numerical resolution. Colonius et al. [15]
have shown that there exists a threshold value below
which the computational effort required to obtain suf-
ficient resolution (both in space and time) increases
significantly. Below this threshold, the main effect of
decreased damping is a greater number of rebounds
after the bubble collapse. A value of §p of the or-
der of 1 is often necessary to match the theoretical
predictions with the experimental results (van Wijn-
gaarden [20]) and values in this range are used in the
present study (0.4 < ép < 8).

Colonius et al. [15] describe the one-dimensional
implicit Lagrangian finite volume scheme which is
also employed here. The choice of an implicit scheme
was dictated by the necessity of discretely conserving
both mass and momentum. Also, it has the advan-
tage of efliciently handling the inherent stiffness of
the system of equations (1), (2), and (3). A Richard-
son extrapolation technique (Hairer and Wanner [21])
based on the implicit Euler scheme was implemented
and validated.

(4)

3. RESULTS AND DISCUSSION

We consider the one-dimensional flow of a bubbly
mixture bounded by a single, plane wall oscillating
normal to itself (Figure 1). The componemt of the
mixture velocity normal to the wall is equal to the
wall velocity:

Uy (Iw, t) =

Asin(2rwt) (5)
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At the other end of the finite computational domain a
nonreflecting boundary condition is imposed, as dis-
cussed by Colonius et al. [15]. The three parame-
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Figure 1: Schematic diagram of the vibratory cavita-
tion device (left) and of the corresponding computa-
tional domain.

ters governing the flow are the period of oscillation
of the wall, T (T = 2r/w), the amplitude A4, and
the damping parameter, 5. Three different flow
regimes are investigated, namely subresonant, reso-
nant and super-resonant {d’Agostino et al. [22]); note
that resonant conditions are given by w = 1 as a re-
sult of the normalization. The initial void fraction
in the bubbly mixture has been varied in the range
25x 1074 < ap <1072,

We first focus on the subresonant case. If the am-
plitude of oscillation of the wall is sufficiently small,
only linear acoustic waves are observed. The waves
propagate through the domain with real phase speed
(see Colonius et al. [15]) and with only slight atten-
uation due to the damping term. As the amplitude
is increased nonlinear effects occur; shock waves are
generated at the moving wall and propagate through
the domain near the wall. Bubbles experience larger
and larger growth and their subsequent collapse be-
comes more violent. This is exemplified in Figure 2,
which shows the behavior of the pressure and bubble
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Figure 2: Subresonant regime. Nondimensional pres-
sure and radius at the wall as a function of time,
16 < t/T < 20, for w = 0.03, A = 04, ép = 2, and
@ =2.5 x 1074,

radius at the wall as a function of time. The pressure
manifests violent spikes corresponding to each cloud
collapse at the wall. It is important to notice that
the periodicity of the collapse is the same as that of
the wall motion.

Colonius et al. [15] considered the effect of the
damping parameter, §p, on the growth and collapse
near the wall. For a given amplitude, A, there ap-
pears to be a value of §p above which the growth
and maximum size of the bubble are attenuated. Be-
low this critical value, the primary effect of 6p is to
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reduce the number of rebounds after collapse, Note
that in the present case we choose §p high enough
so that only a single rebound is present after each
collapse. Moreover, a large mumber of cycles are nec-
essary for the computation to achieve a steady state
and this number increases with the amplitude, A.

25 T T T —

Figure 3: Behavior of the bubble radius in space, at
time /T = 76, for A = 0.01 ( ), A = 0.025
), and 4 = 0.1 (~---),
and A =0.3 (—). In all cases w = 0.1, fp = 0.1,
and o = 1072,

As the wall motion is increased, the amplitude of
the generated shock wave saturates and increased
bubble growih occurs only in a very thin layer near
the wall. This spatial behavior is depicted in Fig-
ure 3. Note that for A 2= 0.01 the small variation in
bubble radius with distance z is approximately sinu-
soidal. As the amplitude increases, the wave steep-
ens into a shock, The shock strength eventually satu-
rates and & very thin boundary layer is formed, above
which the wall motion is essentially ‘cut-off’. The
situation s similar to the one described for bubble
clouds by Smereka and Banerjee [11] and can be un-
derstood in terms of a cut-off frequency beyond which
acoustic waves no longer bave real phase speed, but
are exponentially damped with increasing distance
from the wall, This follows from the greatly reduced
bubble natural frequency in the region where the ex-

plosive bubble growth takes place. The flow is no
longer locally subresonant in the thin layer near the
wall.

At resopance, the linear phase speed, given by:

1

c= w/k=i(§mll_—-_a7)(1—w2 —iw&D))g (6)

is complex and proportional to the square root of the
frequency and the damping. Thus for low amplitude
(the linear case), the waves are exponentially damped
with increasing distance from the wall. For higher
amplitudes, a petiod doubling in the response of the
bubble layer near the wall accurs: the emergence of
the subharmouic frequency means that the motion is
no longer completely cut-off, but a portion of energy
propagates awny from the wall. A typical example
of the pressure and radius at the wall are shown in
Figure 4 and Figure 5 for a few cycles of the wall
oscillation. A similar period doubling route to chaos
was also detected in the bubble cloud calculations of
Smereka and Bauerjee [11].

Figure 5 shows that very strong pressure peaks can
occur at resonamt conditions, even for moderate am-
plitudes (when compared to the sub-resonant case in
Figure 2). Insuring accurate resolution (both in space
and time) uf pressure peaks such as those shown in
Figure 5 represents a major effort in the present nu-
merical study. While time resclution is automatically
obtained in the present scheme, a correct description
of the pressure in space is only obtained using a suf-
ficiently refined mesh.

Figure 6 is a bifurcativn diagram showing the be-
havier of the bubble radius in the cloud as a function
of the wall motion, for a given frequency of oscilla-
tion. It illustrates a typical period-deubling route
to chaos. As the amplitude of the wall motion is
increased, the bubble radius undergoes 3 series of bi-
furcations eventually leading to a chaotic attractor.

The results presented here for a bubble cloud show
certain similarities to the nonlinear dymamics of in-
dividual bubbles (Lauterborn and Parlitz (23]) and
bubble clouds (Smereka and Banerjee [11]). For ex-
ample, the occurtence of period doublings and cas-
cades to chaos are observed in resonance studies of
single bubbles treated as nonlinear osclllators (Feng
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Figure 4: Resonant regime. Nondimensional pressure
and radius at the wall as a function of time, 12 <
t/T <16, forw=1,4=0.1,0p =4, and g = 2.5x
10~%. Period doubling results in a stronger collapse
every other cycle.

and Leal [24]). Furthermore, Lauterborn and Koch
[25], and Lauterborn et al. [10] have experimentally
observed that a bubble cloud under ultrasound will
follow a subharmonic route to chaos with a low di-
mensional strange attractor. In their earlier experi-
ments on a vibratory cavitation device, Hansson and
Mgrch [9] also observed that, depending on the exper-
imental parameters, total collapse of the bubbly mix-
ture was not achieved in each cycle but could stretch
over two or more cycles. The present results give
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Figure 5: Resonant regime. Nondimensional pressure
and radius at the wall as a function of time, 125 <
t/T <138, forw =1, A=035,6p =8, and ap =
2.5 x 102, A strong cloud collapse occurs every six
oscillation cycles.

a further explanation of these experimental observa-
tions.

Period doubling leading to chaos also occurs at
super-resonant conditions. A typical example of the
transition to chaotic behavior is shown in Figure 7
and 8. The phase diagram of Figure 8, clearly shows
the absence of a periodic structure and the transition
towards a chaotic behavior.

4. CONCLUSIONS
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Figure 6: Bifurcation diagram. The radius, R is plot-
ted as a function of the amplitude, A4, for w = 1,
6p = 0.4, and ag = 10~2.
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Figure 7: Super-Resonant regime. Nondimensional
pressure at the wall as a function of time, 0 < t/T <
450, for w = 2, A = 0.175, p = 8, and ap = 2.5 X
1074,

The one-dimensional flow of a bubbly mixture in an
idealized vibratory cavitation device has been stud-
ied. The nonlinear dynamics of the bubbly mixture
have been analyzed for subresonant, resonant and
super-resonant regimes. As the wall motion increases

Figure 8: Super-Resonant regime. Phase diagram
illustrating the transition towards a chaotic behavior
in time of the radius and pressure; 0 < ¢/T < 450,
for w =2, A=0.175, 6p = 8, and ag = 2.5 x 10™4.

in amplitude, strong shock waves form at the wall
and propagate through the mixture. The numerical
scheme accurately resolves the shock waves and as-
sociated violent bubble collapses and strong pressure
pulses.

Analysis of the wave propagation in the domain
shows that, as the amplitude of the wall motion is
increased above a critical value, saturation occurs in
the strength of the shock waves. Also, as the growth
and collapse of the bubble become more violent, the
shocks are confined to a small region close to the os-
cillating surface.

In the subresonant regime no period doubling was
observed in the bubble collapse. In the resonant
and super-resonant regimes period doubling was ob-
served, as the amplitude of the wall motion was in-
creased. Ultimately, the nonlinear dynamics of the
bubbly mixture follow a subharmonic route to chaos.
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